The Small-Mass Limit for Langevin Dynamics with Unbounded Coefficients and Positive Friction
详细信息    查看全文
  • 作者:David P. Herzog ; Scott Hottovy ; Giovanni Volpe
  • 关键词:Small ; mass limit ; Smoluchowski–Kramers approximation ; Locally Lipschitz coefficients
  • 刊名:Journal of Statistical Physics
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:163
  • 期:3
  • 页码:659-673
  • 全文大小:480 KB
  • 参考文献:1.Derjaguin, B.: Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. USSR 14, 633–662 (1941)
    2.Freidlin, M.: Some remarks on the Smoluchowski–Kramers approximation. J. Stat. Phys. 117, 617–634 (2004)MathSciNet CrossRef MATH ADS
    3.Freidlin, M., Hu, W.: Smoluchowski–Kramers approximation in the case of variable friction. J. Math. Sci. 179, 184–207 (2011)MathSciNet CrossRef MATH
    4.Freidlin, M., Hu, W., Wentzell, A.: Small mass asymptotic for the motion with vanishing friction. Stoch. Process. Appl. 123, 45–75 (2013)MathSciNet CrossRef MATH
    5.Freidlin, M.I., Wentzell, A.D.: Random perturbations of dynamical systems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, 3rd edn. Springer, Heidelberg (2012). 1979. doi:10.​1007/​978-3-642-25847-3 . Translated from the Russian original by Joseph Szücs
    6.Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. Prentice-Hall Inc., Englewood Cliffs (1965)MATH
    7.Hottovy, S., McDaniel, A., Volpe, G., Wehr, J.: The Smoluchowski–Kramers limit of stochastic differential equations with arbitrary state-dependent friction. Commun. Math. Phys. 336(3), 1259–1283 (2015). doi:10.​1007/​s00220-014-2233-4 MathSciNet CrossRef MATH ADS
    8.Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer, New York (1991)MATH
    9.Khasminskii, R.: Stochastic stability of differential equations. In: Milstein, G.N., Nevelson, M.B. (eds.) Stochastic Modelling and Applied Probability, vol. 66, 2nd edn. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-23280-0
    10.Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)MathSciNet CrossRef MATH ADS
    11.Lançon, P., Batrouni, G., Lobry, L., Ostrowsky, N.: Drift without flux: Brownian walker with a space-dependent diffusion coefficient. Europhys. Lett. 54, 28–34 (2001)
    12.Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25(3), 518–548 (1993). doi:10.​2307/​1427522 MathSciNet CrossRef MATH
    13.Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer, Berlin (2003)CrossRef MATH
    14.Ortega, J.M.: Matrix Theory. The University Series in Mathematics. Plenum Press, New York (1987). A second course
    15.Rey-Bellet, L.: Ergodic properties of Markov processes. In: Open Quantum Systems. II. Lecture Notes in Mathematics, vol. 1881, pp. 1–39. Springer, Berlin (2006)
    16.Sancho, J.M., Miguel, M.S., Dürr, D.: Adiabatic elimination for systems of Brownian particles with nonconstant damping coefficients. J. Stat. Phys. 28, 291–305 (1982)MathSciNet CrossRef MATH ADS
    17.Smoluchowski, M.: Drei vortrage über diffusion brownsche bewegung and koagulation von kolloidteilchen. Phys. Z. 17, 557–585 (1916)ADS
    18.Verwey, E.J.W., Overbeek, J.T.G., Overbeek, J.T.G.: Theory of the stability of lyophobic colloids. Courier Corp. (1999)
    19.Volpe, G., Helden, L., Brettschneider, T., Wehr, J., Bechinger, C.: Influence of noise on force measurements. Phys. Rev. Lett. 104, 170602 (2010)
    20.Volpe, G., Petrov, D.: Torque detection using brownian fluctuations. Phys. Rev. Lett. 97(21), 210603 (2006)
    21.Weinan, E., Vanden-Eijnden, E.: Transition-path theory and path-finding algorithms for the study of rare events. Phys. Chem. 61, 391–420 (2010)
  • 作者单位:David P. Herzog (1)
    Scott Hottovy (2)
    Giovanni Volpe (3) (4)

    1. Department of Mathematics, Iowa State University, Ames, IA, 50011, USA
    2. Department of Mathematics, University of Wisconsin-Madison, Madison, WI, 53706, USA
    3. Soft Matter Lab, Department of Physics, Bilkent University, 06800, Ankara, Turkey
    4. UNAM-Institute of Material Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Statistical Physics
    Mathematical and Computational Physics
    Physical Chemistry
    Quantum Physics
  • 出版者:Springer Netherlands
  • ISSN:1572-9613
文摘
A class of Langevin stochastic differential equations is shown to converge in the small-mass limit under very weak assumptions on the coefficients defining the equation. The convergence result is applied to three physically realizable examples where the coefficients defining the Langevin equation for these examples grow unboundedly either at a boundary, such as a wall, and/or at the point at infinity. This unboundedness violates the assumptions of previous limit theorems in the literature. The main result of this paper proves convergence for such examples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700