Lamp-Shaped Octametallic Lanthanide [Ln8SiO4] Clusters Based on a μ 4-Silicate-Bridge Core
详细信息    查看全文
  • 作者:Shi-Xiong She ; Yanmei Chen ; Dandan Gao ; Yahong Li ; Wu Li
  • 关键词:Octametallic cluster ; Crystal structure ; Lanthanide ; Silicate ; Magnetic properties
  • 刊名:Journal of Cluster Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:27
  • 期:2
  • 页码:691-701
  • 全文大小:818 KB
  • 参考文献:1.I. L. Malaestean, A. Ellern, S. Baca, and P. Kögerler (2012). Chem. Commun. 48, 1499–1501.CrossRef
    2.M. R. Bürgstein and P. W. Roesky (2000). Angew. Chem. Int. Ed. 39, 549–551.CrossRef
    3.M. R. Bürgstein, M. T. Gamer, and P. W. Roesky (2004). J. Am. Chem. Soc. 126, 5213–5218.CrossRef
    4.X.-J. Kong, Y. Wu, L.-S. Long, L.-S. Zheng, and Z. Zheng (2009). J. Am. Chem. Soc. 131, 6918–6919.CrossRef
    5.J. Xu and K. N. Raymond (2000). Angew. Chem. Int. Ed. 39, 2745–2747.CrossRef
    6.T. Kajiwara, H. Wu, T. Ito, N. Iki, and S. Miyano (2004). Angew. Chem. Int. Ed. 43, 1832–1835.CrossRef
    7.R.-Y. Wang, Z.-P. Zheng, T.-Z. Jin, and R. J. Staple (1999). Angew. Chem. Int. Ed. 38, 1813–1815.CrossRef
    8.J.-W. Cheng, J. Zhang, S.-T. Zheng, M.-B. Zhang, and G.-Y. Yang (2006). Angew. Chem. Int. Ed. 45, 73–77.CrossRef
    9.H. Tsukube and S. Shinoda (2002). Chem. Rev. 102, 2389–2403.CrossRef
    10.A. B. Canaj, D. I. Tzimopoulos, A. Philippidis, G. E. Kostakis, and C. J. Milios (2012). Inorg. Chem. 51, 7451–7453.CrossRef
    11.L. G. Hubert-Pfalzgraf (1995). New J. Chem. 19, 727–750.
    12.J. Wang, R. Wang, J. Yang, Z. Zheng, M. D. Carducci, T. Cayou, N. Peyghambarian, and G. E. Jabbour (2001). J. Am. Chem. Soc. 123, 6179–6180.CrossRef
    13.G. L. Law, T. A. Pham, J. Xu, and K. N. Raymond (2012). Angew. Chem. 124, 2421–2424.CrossRef
    14.T. E. Müller, K. C. Hultzsch, M. Yus, F. Foubelo, and M. Tada (2008). Chem. Rev. 108, 3795–3892.CrossRef
    15.F. Pohlki and S. Doye (2003). Chem. Soc. Rev. 32, 104–114.CrossRef
    16.P. W. Roesky, G. Canseco-Melchor, and A. Zulys (2004). Chem. Commun., 738–739.
    17.F. T. Edelmann (2009). Chem. Soc. Rev. 38, 2253–2268.CrossRef
    18.P. W. Roesky and T. E. Müller (2003). Angew. Chem. Int. Ed. 42, 2708–2710.CrossRef
    19.S. Yu and A. Watson (1999). Chem. Rev. 99, 2353–2378.CrossRef
    20.L. Messerle, D. Nolting, L. Bolinger, A. H. Stolpen, B. F. Mullan, D. Swenson, and M. Madsen (2005). Acad. Radiol. 12, S46–S47.CrossRef
    21.Y.-N. Guo, X.-H. Chen, S.-F. Xue, and J.-K. Tang (2012). Inorg. Chem. 51, 4035–4042.CrossRef
    22.D. N. Woodruff, R. E. P. Winpenny, and R. A. Layfield (2013). Chem. Rev. 113, 5110–5148.CrossRef
    23.P. Zhang, Y.-N. Guo, and J.-K. Tang (2013). Coord. Chem. Rev. 257, 1728–1763.CrossRef
    24.J.-B. Peng, X.-J. Kong, Y.-P. Ren, L.-S. Long, R.-B. Huang, and L.-S. Zheng (2012). Inorg. Chem. 51, 2186–2190.CrossRef
    25.R. J. Blagg, F. Tuna, E. J. L. McInnes, and R. E. P. Winpenny (2011). Chem. Commun. 47, 10587–10589.CrossRef
    26.D. I. Alexandropoulos, S. Mukherjee, C. Papatriantafyllopoulou, C. P. Raptopoulou, V. Psycharis, V. Bekiari, G. Christou, and T. C. Stamatatos (2011). Inorg. Chem. 50, 11276–11278.CrossRef
    27.F. Yang, Q. Zhou, G. Zeng, G.-H. Li, L. Gao, Z. Shi, and S.-H. Feng (2014). Dalton Trans. 43, 1238–1245.CrossRef
    28.P.-P. Yang, X.-F. Gao, H.-B. Song, S. Zhang, X.-L. Mei, L.-C. Li, and D.-Z. Liao (2011). Inorg. Chem. 50, 720–722.CrossRef
    29.Y.-L. Miao, J.-L. Liu, J.-Y. Li, J.-D. Leng, Y.-C. Ou, and M.-L. Tong (2011). Dalton Trans. 40, 10229–10236.CrossRef
    30.H.-S. Ke, P. Gamez, L. Zhao, G.-F. Xu, S.-F. Xue, and J.-K. Tang (2010). Inorg. Chem. 49, 7549–7557.CrossRef
    31.A. S. R. Chesman, D. R. Turner, B. Moubaraki, K. S. Murray, G. B. Deacon, and S. R. Batten (2012). Dalton Trans. 41, 3751–3757.CrossRef
    32.L. Zhao, S.-F. Xue, and J.-K. Tang (2012). Inorg. Chem. 51, 5994–5996.CrossRef
    33.M. U. Anwar, S. S. Tandon, L. N. Dawe, F. Habib, M. Murugesu, and L. K. Thompson (2012). Inorg. Chem. 51, 1028–1034.CrossRef
    34.P.-H. Lin, W.-B. Sun, M.-F. Yu, G.-M. Li, P.-F. Yan, and M. Murugesu (2011). Chem. Commun. 47, 10993–10995.CrossRef
    35.Y.-Z. Zheng, M. Evangelisti, and R. E. P. Winpenny (2011). Angew. Chem. Int. Ed. 50, 3692–3695.CrossRef
    36.Y. Z. Zheng, M. Evangelisti, F. Tuna, and R. E. P. Winpenny (2012). J. Am. Chem. Soc. 134, 1057–1065.CrossRef
    37.H.-Q. Tian, L. Zhao, Y.-N. Guo, Y. Guo, J.-K. Tang, and Z.-L. Liu (2012). Chem. Commun. 48, 708–710.CrossRef
    38.S.-X. She, M. J. Zaworotko, W. Liu, Z.-X. Zhang, and Y. H. Li (2013). CrystEngComm 15, 5003–5006.CrossRef
    39.S.-X. She, Y.-M. Chen, M. J. Zaworotko, W. Liu, Y.-Y. Cao, J. Wu, and Y. H. Li (2013). Dalton Trans. 42, 10433–10438.CrossRef
    40.G. M. Sheldrick (2008). Acta Crystallogr. Sect. A 64, 112–122.CrossRef
    41.M. Nishiura, Z. M. Hou, and Y. Wakatsuki (2004). Organometallics 23, 1359–1368.CrossRef
    42.M. Zimmermann, N. A. Froystein, A. Fischbach, P. Sirsch, H. M. Dietrich, K. W. Törnroos, E. Herdtweck, and R. Anwander (2007). Chem. Eur. J. 13, 8784–8800.CrossRef
    43.E. L. Roux, O. Michel, H. Sommerfeldt, Y.-C. Liang, C. Maichle-Mössmer, K. W. Törnroos, and R. Anwander (2010). Dalton Trans. 39, 8552–8559.CrossRef
    44.S.-Z. Li, D.-D. Zhang, Y.-Y. Guo, P.-T. Ma, J.-W. Zhao, J.-P. Wang, and J.-Y. Niu (2011). Eur. J. Inorg. Chem. 35, 5397–5404.CrossRef
    45.M.-L. Wei, C. He, Q.-Z. Sun, Q.-J. Meng, and C.-Y. Duan (2007). Inorg. Chem. 46, 5957–5966.CrossRef
    46.M. U. Anwar, S. S. Tandon, L. N. Dawe, F. Habib, M. Murugesu, and L. K. Thompson (2012). Inorg. Chem. 51, 1028–1034.CrossRef
    47.V. Chandrasekhar, P. Bag, and E. Colacio (2013). Inorg. Chem. 52, 4562–4570.CrossRef
    48.W.-H. Fang, L. Cheng, L. Huang, and G.-Y. Yang (2013). Inorg. Chem. 52, 6–8.CrossRef
    49.M.-X. Yao, Q. Zheng, F. Gao, Y.-Z. Li, Y. Song, and J.-L. Zuo (2012). Dalton Trans. 41, 13682–13690.CrossRef
  • 作者单位:Shi-Xiong She (1)
    Yanmei Chen (1)
    Dandan Gao (2)
    Yahong Li (1)
    Wu Li (2)

    1. College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
    2. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Inorganic Chemistry
    Physical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8862
文摘
The employment of silicate ion, SiO4 4−, as a ligand in the coordination chemistry of lanthanides is reported. A series of octanuclear clusters of general formula [Ln8L8(C6H4NH2COO)4SiO4] (H2L = 2-{[(2-hydroxy-3-methoxy-phenyl)methylidene]amino}benzoic acid; Ln = Tb(1), Gd(2), Nd(3), Pr(4), Sm(5)) have been prepared via reactions of lanthanide nitrate salts, H2L and Na2SiO3. The metal skeleton shows rarely observed lamp-shaped conformation with eight metals being connected by a μ 4-silicate bridge. Variable-temperature, solid-state dc magnetic susceptibility studies were carried out on polycrystalline samples of 1 and 2. The data in the 2.0–300 K range reveal antiferromagnetic LnIII⋯LnIII exchange interactions in these two clusters. This work demonstrates the synthetic potential of combining Schiff-base ligands with silicate in the preparation of polymetallic lanthanide clusters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700