Physiological response to drought in seedlings of Pistacia lentiscus (mastic tree)
详细信息    查看全文
  • 作者:A. R. Vasques ; G. Pinto ; M. C. Dias ; C. M. Correia ; J. M. Moutinho-Pereira…
  • 关键词:Osmotic stress ; Polyethylene glycol ; Ecological restoration ; Resilience
  • 刊名:New Forests
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:47
  • 期:1
  • 页码:119-130
  • 全文大小:438 KB
  • 参考文献:Bacelar EA, Moutinho-Pereira JM, Gonçalves B, Ferreira H, Correia CM (2007) Changes in growth, gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting water availability regimes. Environ Exp Bot 60:183–192CrossRef
    Bacelar E, Moutinho-Pereira JM, Gonçalves B, Brito C, Gomes-Laranjo J, Ferreira H, Correia CM (2012) Water use strategies of plants under drought conditions. In: Aroca Ricardo (ed) Plant responses to drought stress: from morphological to molecular features. Springer, Berlin, pp 145–170CrossRef
    Baeza MJ, Santana VM, Pausas JG, Vallejo VR (2011) Successional trends in standing dead biomass in Mediterranean basin species. J Veg Sci 22:467–474CrossRef
    Björkman O, Demmig-Adams B (1994) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze E-D, Caldwell MM (eds) Ecophysiology of Photosynthesis. Springer, Berlin, p 1747
    Correia O, Barradas MD (2000) Ecophysiological differences between male and female plants of Pistacia lentiscus L. Plant Ecol 149:131–142CrossRef
    Cortina J, Green JJ, Baddeley JA, Watson CA (2008) Root morphology and water transport of Pistacia lentiscus seedlings under contrasting water supply: a test of the pipe stem theory. Environ Exp Bot 62:343–350CrossRef
    Filella I, Lusia J, Piñol J, Peñuelas J (1998) Pistacia lentiscus and Quercus ilex saplings in severe drought and high temperature conditions. Environ Exp Bot 39:213–220CrossRef
    Flexas J, Gulías J, Jonasson S, Medrano H, Mus M (2001) Seasonal patterns and control of gas exchange in local populations of the Mediterranean evergreen shrub Pistacia lentiscus L. Acta Oecol 22:33–43CrossRef
    Galmés J, Abadía A, Cifre J, Medrano H, Flexas J (2007) Photoprotection processes under water stress and recovery in Mediterranean plants with different growth forms and leaf habits. Physiol Plant 130:495–510CrossRef
    García-Fayos P (2001) Bases ecológicas para la recolección, almacenamiento y germinación de semillas de especies de uso forestal en la Comunidad Valenciana. Generalitat Valenciana, Valencia (Book ID: 6170)
    García-Fayos P, Verdú M (1998) Soil seed bank factors controlling germination and establishment of a Mediterranean shrub: Pistacia lentiscus L. Acta Oecol 19:357–366CrossRef
    Gratani L, Varone L (2004) Adaptive photosynthetic strategies of the Mediterranean maquis species according to their origin. Photosynthetica 42:551–558CrossRef
    Gúlias J, Flexas J, Abadía A, Madrano H (2002) Photosynthetic responses to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovici-salvatoris, an endemic Balearic species. Tree Physiol 22:687–697
    IPCC (2013) Working group I: the physical basis of climate change. Cambridge University Press, Cambridge
    IPMA (Portuguese Institute of the Sea and Atmosphere). https://​www.​ipma.​pt/​pt/​oclima/​normais.​clima/​ (Last accessed Aug 2013)
    Jordano P (1989) Pre-dispersal biology of Pistacia lentiscus (Anacardiaceae): cumulative effects on seed removal by birds. Oikos 55:375–386CrossRef
    Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2012) Fire in Mediterranean ecosystems. Cambridge University Press, New York, p 515
    Kyparissis A, Petropoulou Y, Manetas Y (1995) Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L., Labiatae) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. J Exp Bot 46:1825–1831CrossRef
    Liodakis S, Kakardakis T (2008) Measuring the relative particle foliar combustibility of WUI forest species located near Athens. J Therm Anal Calorim 93:627–635CrossRef
    Maestre FT, Cortina J, Bautista S, Bellot J, Vallejo R (2003) Small-scale environmental heterogeneity and spatiotemporal dynamics of seedling establishment in a semiarid degraded ecosystem. Ecosystems 6:630–643CrossRef
    Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668CrossRef PubMed
    Michel BE, Kaufmann MR (1973) The osmotic potential of polyethylene glycol 6000. Plant Physiol 51:914–916CrossRef PubMed PubMedCentral
    Monteiro M, Santos C, Mann RM, Soares AM, Lopes T (2007) Evaluation of cadmium genotoxicity in Lactuca sativa L. using nuclear microsatellites. Environ Exp Bot 60:421–427CrossRef
    Moreno-Gutiérrez C, Dawson TE, Nicolás E, Querejeta JI (2012) Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytol 196:489–496CrossRef PubMed
    Moutinho-Pereira JM, Correia CM, Gonçalves B, Bacelar EL, Torres-Pereira JM (2004) Leaf gas-exchange and water relations of grapevines grown in three different conditions. Photosynthetica 42:81–86CrossRef
    Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim et Biophys Acta (BBA)-Bioenerg, 1767(6):414-421
    Osmond CB, Anderson JM, Ball MC, & Egerton JJG (1999) Compromising efficiency: the molecular ecology of light-resource utilization in plants. Physiol plant ecol. Blackwell Science Ltd, Oxford, 1–25.
    Paula S, Pausas JG (2008) Burning seeds: germinative response to heat treatments in relation to resprouting ability. J Ecol 96:543–552CrossRef
    Pausas J, Llovet J, Rodrigo A, Vallejo R (2008) Are wildfires a disaster in the Mediterranean basin? A review. Int J Wildland Fire 17:713–723CrossRef
    Santos C, Fragoeiro S, Phillips A (2005) Physiological response of grapevine cultivars and a rootstock to infection with Phaeoacremonium and Phaeomoniella isolates: an in vitro approach using plants and calluses. Sci Hortic 103:187–198CrossRef
    Sims DA, Gamon JÁ (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354CrossRef
    Tsakaldimi M, Ganatsas P (2001) Treatments improving seed germination of two Mediterranean sclerophyll species: Ceratonia siliqua and Pistacia lentiscus. In: Proceedings of the 3rd Balcan scientific conference, vol II, pp 119–127. ISBN: 954-90896-3-0
    Valladares F, Sánchez-Gómez D (2006) Ecophysiological traits associated with drought in Mediterranean tree seedlings: individual responses versus interspecific trends in eleven species. Plant Biol 8:688–697CrossRef PubMed
    Vallejo VR, Smanis A, Chirino E, Fuentes D, Valdecantos A, Vilagrosa A (2012) Perspectives in dryland restoration: approaches for climate change adaptation. New For 43:561–579CrossRef
    Vasques A, Chirino E, Vilagrosa A, Vallejo VR, Keizer JJ (2013) The role of seed provenance in the early development of Arbutus unedo seedlings under contrasting watering conditions. Environ Exp Bot 96:11–19CrossRef
    Vasques A, Vallejo VR, Santos C, Keizer JJ (2014) The role of cold storage and seed source in the germination of three Mediterranean shrub species with contrasting dormancy types. Ann For Sci. doi:10.​1007/​s13595-014-0395-z
    Verdú M, García-Fayos P (1998a) Female biased sex ratios in Pistacia lentiscus L. (Anacardiaceae). Plant Ecol 135:95–101CrossRef
    Verdú M, García-Fayos P (1998b) Ecological causes, function, and evolution of abortion and parthenocarpy in Pistacia lentiscus (Anacardiaceae). Can J Bot 76:134–141
    Verdú M, García-Fayos P (2000) The effect of deceptive fruits on predispersal seed predation by birds in Pistacia lentiscus. Plant Ecol 156(2):245–248
    Vilagrosa A, Morales F, Abadía A, Bellot J, Cochard H, Gil-Pelegrin E (2010) Are symplast tolerance to intense drought conditions and xylem vulnerability to cavitation coordinated? An integrated analysis of photosynthetic, hydraulic and leaf level processes in two Mediterranean drought-resistant species. Environ Exp Bot 69:233–242CrossRef
    Vilagrosa A, Hernández EI, Luis VC, Cochard H, Pausas JG (2014) Physiological differences explain the co-existence of different regeneration strategies in Mediterranean ecosystems. New Phytol 201:1277–1288CrossRef PubMed
    Zohary M (1952) A monographical study of the genus Pistacia. Palest J Bot Jerusalem Ser 5:187–228
    Zunzunegui M, Barradas MCD, Ain-Lhout F, Alvarez-Cansino L, Esquivias MP, Novo FG (2011) Seasonal physiological plasticity and recovery capacity after summer stress in Mediterranean scrub communities. Plant Ecol 212:127–142CrossRef
  • 作者单位:A. R. Vasques (1)
    G. Pinto (2)
    M. C. Dias (2)
    C. M. Correia (3)
    J. M. Moutinho-Pereira (3)
    V. R. Vallejo (4) (5)
    C. Santos (2)
    J. J. Keizer (1)

    1. Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
    2. Department of Biology, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
    3. Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal
    4. Department of Plant Biology, University of Barcelona, Diagonal, 643, 08028, Barcelona, Spain
    5. CEAM Foundation, Parque Tecnológico, Ch. Darwin 14, 46980, Paterna, Spain
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Forestry
  • 出版者:Springer Netherlands
  • ISSN:1573-5095
文摘
Drought is often an important constraint on plant regeneration in the Mediterranean. Pistacia lentiscus is of particular interest in restoration actions in fire-prone areas. This study addressed the current knowledge gap on the physiological response of this species to drought during its initial development. We hypothesized that the seedlings would have a high resistance to drought. In addition, we expected that seedlings from two sources with contrasting climate conditions would perform distinctly under drought. Seeds were collected from two populations in north and south Portugal. Seedlings were subjected to a progressively lower osmotic potential during 25 days, through increasing PEG concentration in the hydroponic solution. The physiological response of the seedlings was assessed by measuring gas exchange and chlorophyll fluorescence after 15 and 25 days of drought exposure, when the osmotic potential was −2.47 and −5.17 MPa, respectively. Shoot growth, net CO2 assimilation rate, stomatal conductance and transpiration were significantly reduced under drought conditions, whilst intrinsic water-use efficiency (IWUE) remained unaffected. This response partially agreed with the known strategy of P. lentiscus to cope with drought, typically maintaining high IWUE, however the observed reduction in stomatal conductance was not as pronounced as expected. Drought induced a decrease in leaf pigments that could be linked to photo-protective mechanisms. Seed source did not have a significant effect on drought response. P. lentiscus showed a high resistance to drought, which clearly supported its use in restoration actions in the Mediterranean, but these findings require further testing under field conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700