Ratiometric colorimetric determination of coenzyme A using gold nanoparticles and a binuclear uranyl complex as optical probes
详细信息    查看全文
  • 作者:Rurong Wu ; Lifu Liao ; Shijun Li ; Yanyan Yang ; Xilin Xiao…
  • 关键词:Sulfosalophen ; Aggregation ; Phosphate binding ; Organophosphates ; Nanomaterials ; Dynamic light scattering ; Transmission electron microscopy
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:183
  • 期:2
  • 页码:715-721
  • 全文大小:1,150 KB
  • 参考文献:1.Davaapil H, Tsuchiya Y, Gout I (2014) Signaling functions of coenzyme a and its derivatives in mammalian cells. Biochem Soc Trans 42:1056–1062CrossRef
    2.Martinez DL, Tsuchiya Y, Gout I (2014) Coenzyme a biosynthetic machinery in mammalian cells. Biochem Soc Trans 42:1112–1117CrossRef
    3.Allred JB, Guy DG (1969) Determination of coenzyme a and acetyl CoA in tissue extracts. Anal Biochem 29:293–299CrossRef
    4.McDougal Jr DB, Dargar RV (1979) A spectrophotometric cycling assay for reduced coenzyme a and its esters in small amounts of tissue. Anal Biochem 97:103–115CrossRef
    5.Marques SM, Esteves da Silva JCG (2008) An optimized luciferase bioluminescent assay for coenzyme a. Anal Bioanal Chem 391:2161–2168CrossRef
    6.Shibata K, Nakai T, Fukuwatari T (2012) Simultaneous high-performance liquid chromatography determination of coenzyme a, dephospho-coenzyme a, and acetyl-coenzyme a in normal and pantothenic acid-deficient rats. Anal Biochem 430:151–155CrossRef
    7.Halvorsen O, Skrede S (1980) Separation of coenzyme-a and its precursors by reversed-phase high-performance liquid-chromatography. Anal Biochem 107:103–108CrossRef
    8.Li J, Ge X, Jiang C (2007) Spectrofluorimetric determination of trace amounts of coenzyme a using terbium ion-ciprofloxacin complex probe in the presence of periodic acid. Anal Bioanal Chem 387:2083–2089CrossRef
    9.Vallejos S, Estevez P, Ibeas S, Garcia FC, Serna F, Garcia JM (2012) An organic/inorganic hybrid membrane as a solid "turn-on" fluorescent chemosensor for coenzyme a (CoA), cysteine (Cys), and glutathione (GSH) in aqueous media. Sensors 12:2969–2982CrossRef
    10.Cheng M, Qiang X, Du C (2013) Fluorescent detection of coenzyme a by analyte-induced aggregation of a cationic conjugated polymer. Chinese Sci Bull 58:1256–1261CrossRef
    11.Giljanovic J, Prkic A (2010) Determination of coenzyme a (CoASH) in the presence of different thiols by using flow-injection with a UV/vis spectrophotometric detector and potentiometric determination of CoASH using an iodide ISE. Molecules 15:100–113CrossRef
    12.Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252CrossRef
    13.Maity D, Bhatt M, Paul P (2015) Calix[4]arene functionalized gold nanoparticles for colorimetric and bare-eye detection of iodide in aqueous media and periodate aided enhancement in sensitivity. Microchim Acta 182:377–384CrossRef
    14.Ratnarathorn N, Chailapakul O, Dungchai W (2015) Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles. Talanta 132:613–618CrossRef
    15.Pandya A, Joshi KV, Modi NR, Menon SK (2012) Rapid colorimetric detection of sulfide using calix[4]arene modified gold nanoparticles as a probe. Sens Actuat B 168:54–61CrossRef
    16.Akhond M, Absalan G, Ershadifar H (2015) Highly sensitive colorimetric determination of amoxicillin in pharmaceutical formulations based on induced aggregation of gold nanoparticles. Spectrochim Acta A 143:223–229CrossRef
    17.Kumar N, Seth R, Kumar H (2014) Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Anal Biochem 456:43–49CrossRef
    18.Giannoulis KM, Giokas DL, Tsogas GZ, Vlessidis AG (2014) Ligand-free gold nanoparticles as colorimetric probes for the non-destructive determination of total dithiocarbamate pesticides after solid phase extraction. Talanta 119:276–283CrossRef
    19.Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120:1959–1964CrossRef
    20.Thavanathan J, Huang NM, Thong KL (2014) Colorimetric detection of DNA hybridization based on a dual platform of gold nanoparticles and graphene oxide. Biosen Bioelectron 55:91–98CrossRef
    21.Verdoold R, Gill R, Ungureanu F, Molenaar R, Kooyman RPH (2011) Femtomolar DNA detection by parallel colorimetric darkfield microscopy of functionalized gold nanoparticles. Biosens Bioelectron 27:77–81CrossRef
    22.Choi I, Yang YI, Jeong E, Kim K, Hong S, Kang T, Yi J (2012) Colorimetric tracking of protein structural evolution based on the distance-dependent light scattering of embedded gold nanoparticles. Chem Commun 48:2286–2288CrossRef
    23.Carey JR, Suslick KS, Hulkower KI, Imlay JA, Imlay KRC, Ingison CK, Ponder JB, Sen A, Wittrig AE (2011) Rapid identification of bacteria with a disposable colorimetric sensing array. J Am Chem Soc 133:7571–7576CrossRef
    24.Templeton AC, Chen S, Gross SM, Murray RW (1999) Water-soluble, isolable gold clusters protected by tiopronin and coenzyme a monolayers. Langmuir 15:66–76CrossRef
    25.Rudkevich DM, Verboom W, Brzozka Z, Palys MJ, Stauthamer WPRV, Van Hummel GJ, Franken SM, Harkema S, Engbersen JFJ, Reinhoudt DN (1994) Functionalized UO2 salenes: neutral receptors for anions. J Am Chem Soc 116:4341–4351CrossRef
    26.Sessler JL, Melfi PJ, Pantos GD (2006) Uranium complexes of multidentate N-donor ligands. Coordin Chem Rev 250:816–843CrossRef
    27.Antonisse MMG, Snellink-Ruël BHM, Engbersen JFJ, Reinhoudt DN (1998) H2PO- 4-selective CHEMFETs with uranyl salophene receptors. Sensors Actuators B Chem 47:9–12CrossRef
    28.Kim J, Kang DM, Shin SC, Choi MY, Kim J, Lee SS, Kim JS (2008) Functional polyterthiophene-appended uranyl-salophen complex: electropolymerization and ion-selective response for monohydrogen phosphate. Anal Chim Acta 614:85–92CrossRef
    29.Wojciechowski K, Wróblewski W, Brzózka Z (2003) Anion buffering in the internal electrolyte resulting in extended durability of phosphate-selective electrodes. Anal Chem 75:3270–3273CrossRef
    30.Wróblewski W, Wojciechowski K, Dybko A, Brzózka Z, Egberink RJM, Snellink-Ruël BHM, Reinhoudt DN (2000) Uranyl salophenes as ionophores for phosphate-selective electrodes. Sensors Actuators B Chem 68:313–318CrossRef
    31.Wygladacz K, Qin Y, Wroblewski W, Bakker E (2008) Phosphate-selective fluorescent sensing microspheres based on uranyl salophene ionophores. Anal Chim Acta 614:77–84CrossRef
    32.He Y, Liao L, Xu C, Wu R, Li S, Yang Y (2015) Determination of ATP by resonance light scattering using a binuclear uranyl complex and aptamer modified gold nanoparticles as optical probes. Microchim Acta 182:419–426CrossRef
    33.Liu G, Chen J, Che P, Ma Y (2003) Separation and quantitation of short-chain coenzyme a’s in biological samples by capillary electrophoresis. Anal Chem 75:78–82CrossRef
  • 作者单位:Rurong Wu (1)
    Lifu Liao (1)
    Shijun Li (1)
    Yanyan Yang (1)
    Xilin Xiao (1)
    Changming Nie (1)

    1. College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan, 421001, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
We describe a ratiometric colorimetric method for the determination of coenzyme A (CoA) by using gold nanoparticles (AuNPs) and bis-uranyl-bis-sulfosalophen (BUBSS) as optical probes. BUBSS is a binuclear uranyl complex and formed through the chelating reaction of two uranyl ions with bis-sulfosalophen. CoA is captured by the AuNPs via the thiol group and this leads to the formation of CoA-AuNPs. In a second step, BUBSS binds two CoA-AuNPs through a coordination reaction between the uranyl ions in BUBSS and the phosphate groups in CoA-AuNPs. This causes the CoA-AuNPs to aggregate and results in a color change from wine red to blue. A ratiometric colorimetric assay was established for CoA based on the ratiometric measurement of absorbance changes at 650 and 525 nm. Their ratio is linearly related to the concentration of CoA in the 0 to 1.2 μmol⋅L-1 range, with a 6 nmol⋅L-1 detection limit under optimal conditions. The method was successfully applied to the determination of CoA in spiked liver samples with recoveries between 99.4 and 102.6 %.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700