Elemental Analysis of Amaranth, Chia, Sesame, Linen, and Quinoa Seeds by ICP-OES: Assessment of Classification by Chemometrics
详细信息    查看全文
  • 作者:Daniela Bolaños ; Eduardo J. Marchevsky ; José M. Camiña
  • 关键词:Amaranth ; Chia ; Sesame ; Linen ; Quinoa ; Elements ; ICP ; OES ; Classification
  • 刊名:Food Analytical Methods
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:9
  • 期:2
  • 页码:477-484
  • 全文大小:792 KB
  • 参考文献:Abe T, Fukami M, Ogasawara M (2008) Cadmium accumulation in the shoots and roots of 93 weed species. Soil Sci Plant Nutr 54:566–573CrossRef
    Abou-Arab AAK, Abou Donia MA (2000) Heavy metals in Egyptian spices and medicinal plants and the effect of processing on their levels. J Agric Food Chem 48:2300–2304CrossRef
    Aguilar EG, Cantarelli MA, Marchevsky EJ, Escudero NL, Camiña JM (2011) Multi-elemental analysis and classification of amaranth seeds according to their botanical origin. J Agric Food Chem 59:9059–9064CrossRef
    Aguilar EG, Cantarelli MA, Marchevsky EJ, Escudero NL, Camiña JM (2013a) Study and determination of As, Cr, and Pb in amaranth seeds. J Chem 138391:1–4CrossRef
    Aguilar EG, Peiretti EG, Uñates MA, Marchevsky EJ, Escudero NL, Camiña JM (2013b) Amaranth seed varieties. A chemometric approach. J Food Meas Charac 7:199–206CrossRef
    Ayerza R, Coates W (2009) Nuevos cultivos industriales: Proyecto regional del Noroeste de Argentina. In: Janick J (ed) Progreso en Nuevos Cultivos. ASHS Press, Alexandria, pp 45–51
    Beltrán-Orozco MC, Romero MR (2003) Chía, alimento milenario. Rev Ind Aliment 5:20–29
    Cahill JP (2004) Genetic diversity among varieties of chia (Salvia hispanica L.). Genet Resour Crop Evol 51:773–778CrossRef
    Chunilall V, Kindness A, Jonnalagadda SB (2005) Heavy metal uptake by two edible Amaranthus herbs grown on soils contaminated with lead, mercury, cadmium, and nickel. J Environ Sci Health B 40:375–384CrossRef
    Comai S, Bertazzo A, Bailoni L, Zancato M, Costa C, Allegri G (2007) The content of proteic and nonproteic (free and protein-bound) tryptophan in quinoa and cereal flours. Food Chem 100:1350–1355CrossRef
    Dolan SP, Capar SG (2002) Multi-element analysis of food by microwave digestion and inductively coupled plasma-atomic emission spectrometry. J Food Compos Anal 15:593–615CrossRef
    Duarte Correa A, Jokl L, Carlsson R (1986) Chemical constituents, in vitro protein digestibility and presence of antinutritional substance in amaranth grains. Arch Latinoam Nutr 36:319–326
    FAO (2015) Food and Agriculture Organization of the United Nations. Faostat Database. http://​faostat3.​fao.​org/​home/​E . Accessed 16 Jan 2015
    FAO (2011) Quinoa: an ancient crop to contribute to world food security, 37th FAO conference in support, Regional Office for Latin America and the Caribbean. FAO, Italy
    Ferreira DS, Pallone JAL, Poppi RJ (2015) Direct analysis of the main chemical constituents in Chenopodium quinoa grain using Fourier transform near-infrared spectroscopy. Food Control 48:91–95CrossRef
    Garibay AM (1989) Historia general de las cosas de Nueva España (Codex Florentino). Editorial Porrua, Mexico
    Inoue T, Ishihara K, Yasumoto K, Niwa M (2010) Comparative analysis of hand properties and compositions of trace elements in linen fabrics produced in different regions. Int J Cloth Sci Technol 22:174–186CrossRef
    Iskander F (1993) Determination of seventeen elements in edible oils and margarine by instrumental neutron activation analysis. J Am Oil Chem Soc 70:803–805CrossRef
    Jacobsen SE (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177CrossRef
    Konishi Y, Hirano S, Tsuboi H, Wada M (2004) Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds. Biosci Biotechnol Biochem 68:231–234CrossRef
    Li Q, Cai S, Mo C, Chu B, Peng L, Yang F (2010) Toxic effects of heavy metals and their accumulation in vegetables grown in a saline soil. Ecotoxicol Environ Saf 73:84–88CrossRef
    Maiga A, Diallo D, Bye R, Paulsen BS (2005) Determination of some toxic and essential metal ions in medicinal and edible plants from Mali. J Agric Food Chem 53:2316–2321CrossRef
    Mendonça S, Saldiva PH, Robison JC, Arêas JAG (2009) Amaranth protein presents cholesterol-lowering effect. Food Chem 116:738–742CrossRef
    Narayanaswamy R, Gokulakumar B (2010) ICP-AES analysis in sesame on the root rot disease incidence. Arch Phytopathol Plant Protect 43:940–948CrossRef
    Nascimento AC, Mota C, Coelho I, Gueifão S, Santos M, Matos AS, Gimenez A, Lobo M, Samman N, Castanheira I (2014) Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: proximates, minerals and trace elements. Food Chem 148:420–426CrossRef
    Noël L, Chekri R, Millour S, Vastel C, Kadar A, Sirot V, Leblanc JC, Guérin T (2012) Li, Cr, Mn, Co, Ni, Cu, Zn, Se and Mo levels in foodstuffs from the Second French TDS. Food Chem 132:1502–1513CrossRef
    Olivares E, Pena E (2009) Bioconcentration of mineral elements in Amaranthus dubius (wild spinach, imbuya) growing wild in crops from Miranda State, Venezuela, and used as food. Interciencia 34(9):604–611
    Onyango CM, Shibairo SI, Imungi JK, Harbinson J (2008) The physico-chemical characteristics and some nutritional values of vegetable amaranth sold in Nairobi, Kenya. Ecol Food Nutr 47:382–398CrossRef
    Pillay V, Jonnalagadda SB (2007) Elemental uptake by edible herbs and lettuce (Latuca sativa). J Environ Sci Health B 42:423–428CrossRef
    Ruales J, Nair BM (1993) Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa, Willd) seeds. Food Chem 48:131–136CrossRef
    USDA (2002) United States Department of Agriculture, Nutrient Database for Standard Reference, Release 15: Nutrient. Data Laboratory Beltsville Research Center, Pennsylvania
    WHO, World Health Organization (1991) Guidelines for the assessment of herbal medicines. WHO, Munich
  • 作者单位:Daniela Bolaños (1)
    Eduardo J. Marchevsky (1)
    José M. Camiña (2) (3)

    1. Instituto de Química de San Luis (INQUISAL), Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700, San Luis, Argentina
    2. Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Mendoza 109, 6300, Santa Rosa, La Pampa, Argentina
    3. Facultad de Ciencias Exactas y Naturales (UNLPam), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Food Science
    Chemistry
    Microbiology
    Analytical Chemistry
  • 出版者:Springer New York
  • ISSN:1936-976X
文摘
In this work, 26 elements (Ag, Al, As, B, Ba, Ca, Cd, Co, Cr, Cs, Cu, Ga, Fe, K, Mg, Mn, Na, P, Pb, Rb, Se, Si, Sr, Ti, V, and Zn) were analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) in seed samples: amaranth, chia, sesame, linen, and quinoa. Elemental analysis showed the presence of toxic elements (As, Cd, and Pb), as well as high mineral content (Fe, Na, P, K, and Mg): The concentrations of toxic elements were below the permissible limits by the WHO. Chemometrics was performed by cluster analysis (CA), principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA). In all cases, a correct classification of each type of seed was obtained. The combination of elemental analysis (major, minor, and toxic elements) and chemometrics was useful to determine nutritional quality in the studied seeds, as well as to classify them according to the botanical origin. For that, this method can be useful for the analysis of raw material as quality control in food factories and government control labs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700