Transcriptome profiling of indole-3-butyric acid-induced adventitious root formation in softwood cuttings of the Catalpa bungei variety ‘YU-1’ at different developmental stages
详细信息    查看全文
  • 作者:Peng Wang ; Lingling Ma ; Ya Li ; Shu’an Wang ; Linfang Li ; Rutong Yang…
  • 关键词:RNA ; Seq ; Softwood cutting ; Plant hormone ; qRT ; PCR ; Gene expression
  • 刊名:Genes & Genomics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:38
  • 期:2
  • 页码:145-162
  • 全文大小:2,488 KB
  • 参考文献:Abarca D, Pizarro A, Del Amo A, Diaz-Sala D (2011) Screening of genes associated with early stages of adventitious root formation from progenitor adult cells of pine. BMC Proc 5:133CrossRef
    Ahkami AH, Lischewski S, Haensch KT, Porfirova S, Hofmann J, Rolletschek H, Melzer M, Franken P, Hause B, Druege U et al (2009) Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism. New Phytol 181:613–625CrossRef PubMed
    Ahkami AH, Melzer M, Ghaffari MR, Pollmann S, Javid MG, Shahinnia F, Hajirezaei MR, Druege U (2013) Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. Planta 238:499–517PubMedCentral CrossRef PubMed
    Ahkami A, Scholz U, Steuernagel B, Strickert M, Haensch KT, Druege U, Reinhardt D, Nouri E, Wirén NV, Franken F et al (2014) Comprehensive transcriptome analysis unravels the existence of crucial genes regulating primary metabolism during adventitious root formation in Petunia hybrida. PLoS One 9:e100997PubMedCentral CrossRef PubMed
    Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631PubMedCentral CrossRef PubMed
    Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950CrossRef PubMed
    Birnbaum KD, Sanchez Alvarado A (2008) Slicing across kingdoms: regeneration in plants and animals. Cell 132:697–710PubMedCentral CrossRef PubMed
    Brinker M, van Zyl L, Liu W, Craig D, Sederoff RR, Clapham DH, von Arnold S (2004) Microarray analyses of gene expression during adventitious root development in Pinus contorta. Plant Physiol 135:1526–1539PubMedCentral CrossRef PubMed
    Chen C, Meyermans H, Burggraeve B, De Rycke RM, Inoue K, De Vleesschauwer V, Steenackers M, Van Montagu MC, Engler GJ, Boerjan WA (2000) Cell-specific and conditional expression of caffeoyl-coenzyme A-3-O-methyltransferase in poplar. Plant Physiol 123:853–868PubMedCentral CrossRef PubMed
    Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187–1195PubMedCentral CrossRef PubMed
    Cho Y, Chang CY, Huang LC, Tsai JB, Liu ZH (2011) Indole-3-butyric acid suppresses the activity of peroxidase while inducing adventitious roots in Cinnamomum kanehirae. Bot Stud 52:153–160
    Consortium GO (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261CrossRef
    da Costa CT, de Almeida MR, Ruedell CM, Schwambach J, Maraschin FS, Fett-Neto AG (2013) When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front Plant Sci 4:133PubMedCentral CrossRef PubMed
    Dawson JH (1988) Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 240:433–439CrossRef PubMed
    Fett-Neto AG, Fett JP, Goulart LW, Pasquali G, Termignoni RR, Ferreira AG (2001) Distinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulus. Tree Physiol 21:457–464CrossRef PubMed
    Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G et al (2002a) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673CrossRef PubMed
    Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002b) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809CrossRef PubMed
    Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230CrossRef PubMed
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652PubMedCentral CrossRef PubMed
    Han H, Sun X, Xie Y, Feng J, Zhang S (2014) Transcriptome and proteome profiling of adventitious root development in hybrid larch (Larix kaempferi × Larix olgensis). BMC Plant Biol 14:305PubMedCentral CrossRef PubMed
    Hofmann E (1976) The significance of phosphofructokinase to the regulation of carbohydrate metabolism. Rev Physiol Biochem Pharmacol 75:1–68PubMed
    Hu Y, Gai Y, Yin L, Wang X, Feng C, Feng L, Li D, Jiang XN, Wang DC (2010) Crystal structures of a Populus tomentosa 4-Coumarate: CoA Ligase shed light on its enzymatic mechanisms. Plant Cell 22:3093–3104PubMedCentral CrossRef PubMed
    Imberty A, Goldberg R, Catesson AM (1985) Isolation and characterization of Populus isoperoxidases involved in the last step of lignin formation. Planta 164:221–226CrossRef PubMed
    Konishi H, Kitano H, Komatsu S (2005) Identification of rice root proteins regulated by gibberellin using proteome analysis. Plant Cell Environ 28:328–339CrossRef
    Koyuncu F, Balta F (2004) Adventitious root formation in leaf-bud cuttings of tea (Camellia sinensis L.). Pak J Bot 36:763–768
    Kuroha T, Kato H, Asami T, Yoshida S, Kamada H, Satoh S (2002) A trans-zeatin riboside in root xylem sap negatively regulates adventitious root formation on cucumber hypocotyls. J Exp Bot 53:2193–2200CrossRef PubMed
    Lavenus J, Goh T, Roberts I, Guyomarc’h S, Lucas M, De Smet I, Fukaki H, Beeckman T, Bennett M, Laplaze L (2013) Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci 18:450–458CrossRef PubMed
    Legué V, Rigal A, Bhalerao RP (2014) Adventitious root formation in tree species: involvement of transcription factors. Physiol Plant 151:192–198CrossRef PubMed
    Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323PubMedCentral CrossRef PubMed
    Li L, Xu J, Xu ZH, Xue HW (2005) Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell 17:2738–2753PubMedCentral CrossRef PubMed
    Li SW, Shi RF, Leng Y (2015) De novo characterization of the mung bean transcriptome and transcriptomic analysis of adventitious rooting in seedlings using RNA-Seq. PLoS One 10:e0132969PubMedCentral CrossRef PubMed
    Liu JL, Wei H, Su JL (2008) The Catalpa Bungei” Yu Qiu No. 1” cuttage seedling vegetative organ dissection structure with inserts the ear to injury the research which the organization forms. Henan Sci 7:012
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRef PubMed
    Lohse M, Nagel A, Herter T, May P, Schroda M, Zrenner R, Tohge T, Fernie AR, Stitt M, Usadel B (2014) Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ 37:1250–1258CrossRef PubMed
    Ludwig-Müller J, Vertocnik A, Town CD (2005) Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J Exp Bot 56:2095–2105CrossRef PubMed
    Ma LL, Wang P, Zhang ZY, Li LF, Yang RT, Li Y (2014) Evaluation on rooting ability of softwood cuttings on catalpa. North Hortic 15:72–77
    Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics 21:3448–3449CrossRef PubMed
    Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517PubMedCentral CrossRef PubMed
    Mcdonald MS, Wynne J (2003) Adventitious root formation in woody tissue: peroxidase—a predictive marker of root induction in Betula pendula. In Vitro Cell Dev Plant 39:234–235CrossRef
    Moubayidin L, Mambro RD, Sabatini S (2009) Cytokinin–auxin crosstalk. Trends Plant Sci 14:557–562CrossRef PubMed
    Muday GK, DeLong A (2001) Polar auxin transport: controlling where and how much. Trends Plant Sci 6:535–542CrossRef PubMed
    Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195CrossRef PubMed
    Negi S, Sukumar P, Liu X, Cohen JD, Muday GK (2010) Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J 61:3–15CrossRef PubMed
    Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol 2:e258PubMedCentral CrossRef PubMed
    Niemi K, Julkunen-Tiitto R, Tegelberg R, Haggman H (2005) Light sources with different spectra affect root and mycorrhiza formation in Scots pine in vitro. Tree Physiol 25:123–128CrossRef PubMed
    Peat TS, Böttcher C, Newman J, Lucent D, Cowieson N, Davies C (2012) Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis. Plant Cell 24:4525–4538PubMedCentral CrossRef PubMed
    Quan J, Zhang S, Zhang C, Meng S, Zhao Z, Xu X (2014) Molecular cloning, characterization and expression analysis of the SAMS gene during adventitious root development in IBA-induced tetraploid black locust. PLoS One 9:e108709PubMedCentral CrossRef PubMed
    Romualdi C, Bortoluzzi S, D’Alessi F, Danieli GA (2003) IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics 12:159–162CrossRef PubMed
    Schaeffer GW, Sharpe FT, Sicher RC (1997) Fructose 1, 6-bisphosphate aldolase activity in leaves of a rice mutant selected for enhanced lysine. Phytochemistry 46:1335–1338CrossRef PubMed
    Schmitt D, Pakusch AE, Matern U (1991) Molecular cloning, induction and taxonomic distribution of caffeoyl-CoA 3-O-methyltransferase, an enzyme involved in disease resistance. J Biol Chem 266:17416–17423PubMed
    Shi X, Li Y, Yang RT, Wang Q, Yao G (2011) ISSR analysis of genetic diversity of Catalpa bungei CA Mey germplasm resources in China. Jiangsu J Agric Sci 3:032
    Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432PubMedCentral CrossRef PubMed
    Song XM, Li Y, Hou XL (2013) Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 14:573PubMedCentral CrossRef PubMed
    Sorin C, Negroni L, Balliau T, Corti H, Jacquemot MP, Davanture M, Sandberg G, Zivy M, Bellini C (2006) Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. Plant Physiol 140:349–364PubMedCentral CrossRef PubMed
    Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939CrossRef PubMed
    Thomas P, Lee MM, Schiefelbein J (2003) Molecular identification of proline-rich protein genes induced during root formation in grape (Vitis vinifera L.) stem cuttings. Plant Cell Environ 26:1497–1504CrossRef
    Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, Selbig J, Hannemann J, Piques MC, Steinhauser D et al (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol 138:1195–1204PubMedCentral CrossRef PubMed
    Wang Y, Weathers PJ (2007) Sugars proportionately affect artemisinin production. Plant Cell Rep 26:1073–1081CrossRef PubMed
    Wei K, Wang L, Cheng H, Zhang C, Ma C, Zhang L, Gong W, Wu L (2013) Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization. Gene 514:91–98CrossRef PubMed
    Wei K, Wang LY, Wu LY, Zhang CC, Li HL, Tian LQ, Cao HL, Cheng H (2014) Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.). PLoS One 9:e107201PubMedCentral CrossRef PubMed
    Weijers D, Jürgens G (2005) Auxin and embryo axis formation: the ends in sight? Curr Opin Plant Biol 8:32–37CrossRef PubMed
    Xiao S, Chye ML (2009) An Arabidopsis family of six acyl-CoA-binding proteins has three cytosolic members. Plant Physiol Biochem 47:479–484CrossRef PubMed
    Xiao S, Chye ML (2010) New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Prog Lipid Res 50:141–151CrossRef PubMed
    Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189CrossRef
    Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, Xia YF, Sun DY, Sun Y (2009) Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiol 151:1889–1901PubMedCentral CrossRef PubMed
  • 作者单位:Peng Wang (1)
    Lingling Ma (1)
    Ya Li (1)
    Shu’an Wang (1)
    Linfang Li (1)
    Rutong Yang (1)
    Yuzhu Ma (1)
    Qing Wang (1)

    1. Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
  • 刊物主题:Microbial Genetics and Genomics; Plant Genetics & Genomics; Animal Genetics and Genomics; Human Genetics;
  • 出版者:Springer Netherlands
  • ISSN:2092-9293
文摘
Catalpa bungei is a deciduous tree native to China. It is characterized as fast growing, being highly adaptable, and having excellent wood qualities. To better understand potential mechanisms involved in adventitious root (AR) formation, we performed transcriptome analysis of softwood cuttings of C. bungei ‘Yu-1’ at three stages of AR formation using the Illumina sequencing method. Following de novo assembly, 62,955 unigenes were obtained, 31,646 (50.26 %) of which were annotated. A total of 11,100 differentially expressed genes (DEGs), including 10,200 unique and 900 common, were identified in four comparisons. Based on the all GO enrichment networks, 46 common and 7 unique GO categories were identified. Cytoskeleton was only significantly enriched in the activation period, while DNA metabolic process was only significantly enriched in the callus formation. Functional annotation analysis revealed that many of these genes were involved in phenylpropanoid biosynthesis, glycolysis, and plant hormone metabolism, suggesting potential contributions to AR formation. Interestingly, the number of DEGs involved in glycolysis decreased while the number of DEGs involved in phenylpropanoid biosynthesis increased following the AR formative process. Overall, our comprehensive transcriptional overview will prove useful, not only in the understanding of molecular networks that regulate AR formation in C. bungei, but also for exploring genes that may improve rooting rates of other trees. Keywords RNA-Seq Softwood cutting Plant hormone qRT-PCR Gene expression

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700