Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases
详细信息    查看全文
  • 作者:Péter Lajos Sóti ; Diana Weiser ; Tamás Vigh…
  • 关键词:Biocatalysis ; Electrospinning ; Immobilization ; Lipase ; Kinetic resolution
  • 刊名:Bioprocess and Biosystems Engineering
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:39
  • 期:3
  • 页码:449-459
  • 全文大小:1,214 KB
  • 参考文献:1.Zarie ES, Kaidas V, Gedamu D, Mishra YK, Adelung R, Furkert FH, Scherließ R, Steckel H, Groessner-Schreiber B (2012) Solvent free fabrication of micro and nanostructured drug coatings by thermal evaporation for controlled release and increased effects. PLoS One. doi:10.​1371/​journal.​pone.​0040746
    2.Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Stürmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824. doi:10.​1002/​anie.​200300599 CrossRef
    3.Dlugy C, Wolfson A (2007) Lipase catalyse glycerolysis for kinetic resolution of racemates. Bioprocess Biosyst Eng 30:327–330. doi:10.​1007/​s00449-007-0128-x CrossRef
    4.Ghanem A, Aboul-Enein HY (2004) Lipase-mediated chiral resolution of racemates in organic solvents. Tetrahedron Asymmetr 15:3331–3351. doi: 10.​1016/​j.​tetasy.​2004.​09.​019
    5.Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47:555–569. doi:10.​1016/​j.​procbio.​2012.​01.​011 CrossRef
    6.Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations. WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRef
    7.Sheldon RA (2007) Enzyme Immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307. doi:10.​1002/​adsc.​200700082 CrossRef
    8.Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307. doi:10.​1039/​c2cs35231a CrossRef
    9.Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31:1639–1650. doi:10.​1007/​s10529-009-0076-4 CrossRef
    10.Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM, Ulman A, Cowman M, Gross RA (2003) Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685. doi:10.​1021/​ja021223n CrossRef
    11.Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353:2885–2904. doi:10.​1002/​adsc.​201100534 CrossRef
    12.Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463. doi:10.​1016/​j.​enzmictec.​2007.​01.​018 CrossRef
    13.Lei J, Fan J, Yu C, Zhang L, Jiang S, Tu B, Zhao D (2004) Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. Microporous Mesoporous Mater 73:121–128. doi:10.​1016/​j.​micromeso.​2004.​05.​004 CrossRef
    14.Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16:1013–1030. doi:10.​1039/​b512706h CrossRef
    15.Weiser D, Boros Z, Hornyánszky G, Tóth A, Poppe L (2012) Disubstituted dialkoxysilane precursors in binary and ternary sol–gel systems for lipase immobilization. Process Biochem 47:428–434. doi:10.​1016/​j.​procbio.​2011.​11.​023 CrossRef
    16.Lalonde J, Margolin A (2008) Immobilization of enzymes. In: Drauz K, Waldmann H (eds) Enzym. catal. org. synth. Wiley-VCH Verlag GmbH, Weinheim, pp 163–184
    17.Lee S-M, Jin LH, Kim JH, Han SO, Bin NaH, Hyeon T, Koo Y-M, Kim J, Lee J-H (2010) Beta-glucosidase coating on polymer nanofibers for improved cellulosic ethanol production. Bioprocess Biosyst Eng 33:141–147. doi:10.​1007/​s00449-009-0386-x CrossRef
    18.Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523. doi:10.​1016/​j.​biotechadv.​2011.​09.​005 CrossRef
    19.Wu L, Yuan X, Sheng J (2005) Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J Membr Sci 250:167–173. doi:10.​1016/​j.​memsci.​2004.​10.​024 CrossRef
    20.Sóti PL, Telkes L, Rapi Z, Tóth A, Vigh T, Nagy ZK, Bakó P, Marosi G (2014) Synthesis of an aza chiral crown ether grafted to nanofibrous silica support and application in asymmetric Michael addition. J Inorg Organomet Polym Mater 24:713–721. doi:10.​1007/​s10904-014-0037-9 CrossRef
    21.Sakai S, Liu Y, Yamaguchi T, Watanabe R, Kawabe M, Kawakami K (2010) Production of butyl-biodiesel using lipase physically-adsorbed onto electrospun polyacrylonitrile fibers. Bioresour Technol 101:7344–7349. doi:10.​1016/​j.​biortech.​2010.​04.​036 CrossRef
    22.Huang X-J, Chen P-C, Huang F, Ou Y, Chen M-R, Xu Z-K (2011) Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B Enzym 70:95–100. doi:10.​1016/​j.​molcatb.​2011.​02.​010 CrossRef
    23.Nakane K, Ogihara T, Ogata N, Yamaguchi S (2005) Formation of lipase-immobilized poly(vinyl alcohol) nanofiber and its application to flavor ester synthesis. Sen’i Gakkaishi 61:313–316. doi:10.​2115/​fiber.​61.​313 CrossRef
    24.Sakai S, Antoku K, Yamaguchi T, Kawakami K (2008) Development of electrospun poly(vinyl alcohol) fibers immobilizing lipase highly activated by alkyl-silicate for flow-through reactors. J Membr Sci 325:454–459. doi:10.​1016/​j.​memsci.​2008.​08.​008 CrossRef
    25.Zhou Y, Lim L-T (2009) Activation of lactoperoxidase system in milk by glucose oxidase immobilized in electrospun polylactide microfibers. J Food Sci 74:170–176. doi:10.​1111/​j.​1750-3841.​2009.​01071.​x CrossRef
    26. Sóti PL, Nagy ZK, Serneels G, Vajna B, Farkas A, Van der Gucht F, Fekete P, Vigh T, Wagner I, Balogh A, Pataki H, Mező G, Marosi G (2015) Preparation and comparison of spray dried and electrospun bioresorbable drug delivery systems. Eur Polym J 68:671–679. doi:10.​1016/​j.​eurpolymj.​2015.​03.​035
    27.Chen CS, Fujimoto Y, Girdaukas G, Sih CJ (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 104:7294–7299. doi:10.​1021/​ja00389a064 CrossRef
    28.Tomin A, Hornyánszky G, Kupai K, Dorkó Z, Ürge L, Darvas F, Poppe L (2010) Lipase-catalyzed kinetic resolution of 2-methylene-substituted cycloalkanols in batch and continuous-flow modes. Process Biochem 45:859–865. doi:10.​1016/​j.​procbio.​2010.​02.​006 CrossRef
    29.Tomin A, Weiser D, Hellner G, Bata Z, Corici L, Péter F, Koczka B, Poppe L (2011) Fine-tuning the second generation sol–gel lipase immobilization with ternary alkoxysilane precursor systems. Process Biochem 46:52–58. doi:10.​1016/​j.​procbio.​2010.​07.​021 CrossRef
    30.Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 39:267–273. doi:10.​1016/​S0032-3861(97)00229-2 CrossRef
    31.Kurbanoglu EB, Zilbeyaz K, Kurbanoglu NI, Ozdal M, Taskin M, Algur OF (2010) Continuous production of (S)-1-phenylethanol by immobilized cells of Rhodotorula glutinis with a specially designed process. Tetrahedron Asymmetr 21:461–464. doi:10.​1016/​j.​tetasy.​2010.​01.​019 CrossRef
    32.Queiroz N, Nascimento MG (2002) Pseudomonas sp. lipase immobilized in polymers versus the use of free enzyme in the resolution of (R, S)-methyl mandelate. Tetrahedron Lett 43:5225–5227. doi:10.​1016/​S0040-4039(02)01057-2 CrossRef
    33.Högberg H-E (2008) Exploiting enantioselectivity of hydrolases in organic solvents organic. Synthesis with enzymes in non-aqueous media. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  • 作者单位:Péter Lajos Sóti (1)
    Diana Weiser (1)
    Tamás Vigh (1)
    Zsombor Kristóf Nagy (1)
    László Poppe (1) (2)
    György Marosi (1)

    1. Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budafoki út 8., 1111, Budapest, Hungary
    2. SynBiocat Ltd., Lázár deák u. 4/1, 1173, Budapest, Hungary
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Industrial Chemistry and Chemical Engineering
    Industrial and Production Engineering
    Waste Management and Waste Technology
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Food Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1615-7605
文摘
Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700