Variations of wood basic density with tree age and social classes in the axial direction within Pinus massoniana stems in Southern China
详细信息    查看全文
  • 作者:Xiangwen Deng (1)
    Liyun Zhang (1)
    Pifeng Lei (1)
    Wenhua Xiang (1)
    Wende Yan (1)
  • 关键词:Age class ; Disk relative height ; Hunan province ; Pinus massoniana L ; Social class ; Wood density
  • 刊名:Annals of Forest Science
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:71
  • 期:4
  • 页码:505-516
  • 全文大小:
  • 参考文献:1. Acuna MA, Murphy G (2007) Estimating relative log prices of Douglas-fir through a financial analysis of the effects of wood density on lumber recovery and pulp yield. For Prod J 57:60-5
    2. Antony F, Schimleck LR, Daniels RF (2012) Identification of representative sampling heights for specific gravity and moisture content in plantation-grown loblolly pine ( / Pinus taeda). Can J For Res 42:574-84. doi:10.1139/x2012-009 CrossRef
    3. Basuki TM, van Laake PE, Skidmore AK, Hussin YA (2009) Allometric equations for estimating the above-ground biomass in tropical lowland / Dipterocarp forests. For Ecol Manag 257:1684-694. doi:10.1016/j.foreco.2009.01.027 CrossRef
    4. Burdon RD, Low CB (1992) Genetic survey of / Pinus radiata. 6: Wood. 595 properties: variation, heritabilities, and interrelationships with other traits. N Z J For Sci 22:228-45
    5. Cown DJ, McConchie DL, Young GD (1991) Radiata pine-wood properties survey, FRI Bull. No. 50, Rotorua, New Zealand, 1991, 50 p
    6. Crous JW, Morris AR, Scholes MC (2009) Effect of phosphorus and potassium fertiliser on stem form, basic wood density and stem nutrient content of / Pinus patula at various stem heights. Aust For 72:99-11 CrossRef
    7. Downes GM, Hudson IL, Raymond CA, Dean GH, Michell AJ, Schimleck LS, Evans R, Muneri A (1997) Sampling plantation eucalypts for wood and fibre properties. CSIRO Publishing, Melbourne
    8. Fearnside PM (1997) Wood density for estimating forest biomass in Brazilian Amazonia. For Ecol Manag 90:59-9. doi:10.1016/S0378-1127(96) 03840-6 CrossRef
    9. Gardiner B, Leban J-M, Auty D, Simpson H (2011) Models for predicting the wood density of British-grown Sitka spruce. Forestry 84:119-32. doi:10.1093/forestry/cpq050 CrossRef
    10. Gaspar MJ, Lousada, Rodrigues, Aguiar A, Almeida MH (2009) Does selecting for improved growth affect wood quality of / Pinus pinaster in Portugal? For Ecol Manag 258:115-21. doi:10.1016/j.foreco.2009. 03.046 CrossRef
    11. Gil L, Tadesse W, Tolosana E, López R (2010) Eucalyptus species management, history, status and trends in Ethiopia. Proceedings from the Congress held in Addis Ababa, September, 15th-7th, pp 335-50
    12. Hakkila P (1979) Wood density survey and dry weight tables for pine, spruce and birch stems in Finland. Commun Inst For Fenn 96:1-9
    13. Hamilton MG, Greaves BL, Potts BM, Dutkowski GW (2007) Patterns of longitudinal within-tree variation in pulpwood and solidwood traits differ among / Eucalyptus globulus genotypes. Ann For Sci 64:831-37. doi:10.1051/forest:2007064 CrossRef
    14. Hannrup B, Ekberg I, Persson A (2000) Genetic correlations among wood, growth capacity and stem traits in / Pinus sylvestris. Scand J For Res 15:161-70. doi:10.1080/028275800750014966 CrossRef
    15. Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R, Bernoux M, Saint-Andre L (2010) Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manag 260:1375-388. doi:10.1016/j.foreco. 2010.07.040 CrossRef
    16. Honnold V (2009) Developments in the sourcing of raw materials for the production of paper. United States International Trade Commission. J In Commer Econ
    17. Hsu EW (1997) Wood quality requirements for panel products. In: Zhang SY, Gosselin R, Chauret G (eds) Timber Management Toward Wood Quality and End-Product Value. Proceedings of the ATIA/IUFRO International Wood Quality Workshop, Quebec City, Part I, pp 7-0
    18. Ikonen V-P, Peltola H, Wilhelmsson L, Kilpel?inen A, V?is?nen H, Nuutinen T, Kellom?ki S (2008) Modelling the distribution of wood properties along the stems of Scots pine ( / Pinus sylvestris L.) and Norway spruce ( / Picea abies (L.) Karst.) as affected by silvicultural management. For Ecol Manag 256:1356-371. doi:10.1016/j.foreco.2008.06.039 CrossRef
    19. Jia J, Huang YL, Yang ZQ (2012) Variation patterns of wood density on the two clonal seed orchard of / Pinus massoninan. Guangxi Sci 19:84-7 (In Chinese with English abstract)
    20. Johansson K (1993) Influence of initial spacing and tree class on the basic density of / Picea abies. Scand J For Res 8:18-7 CrossRef
    21. K?rkk?inen M (1984) Effect of tree social status on basic density of Norway spruce. Silva Fenn 18:115-20 CrossRef
    22. Kuang YW, Sun FF, Wen DZ, Zhou GY, Zhao P (2008) Tree-ring growth patterns of Masson pine ( / P. massoniana) during the recent decades in the acidification Pearl River Delta of China. For Ecol Manag 255:3534-540. doi:10.1016/j.foreco. 2008.02.036 CrossRef
    23. Lindstr?m H (1996a) Basic density in Norway spruce: Part I. A literature review. Wood Fiber Sci 28:15-7
    24. Lindstr?m H (1996b) Basic density in Norway spruce. Part II. Predicted by stem taper, mean growth ring width, and factors related to crown development. Wood Fiber Sci 28:240-51
    25. Lindstr?m H (1996c) Basic density in Norway spruce. Part III. Development from pith outwards. Wood Fiber Sci 28:391-05
    26. Lundgren C (2004) Microfibril angle and density patterns of fertilized and irrigated Norway spruce. Silva Fenn 38:107-17
    27. McKimmy MD, King JP (1980) Strength relationships in young ponderosa pine of known parentage. Wood Sci 12:165-67
    28. Megraw RA (1985) Wood quality factors in loblolly pine. TAPPI Press, Atlanta, 89 p. ISBN 0-9852-48-
    29. Nuutinen T, Kilpel?inen A, Hirvel? H, H?rk?nen K, Ikonen V-P, Lempinen R, Peltola H, Wilhelmsson L, Kellom?ki S (2009) Future wood and fibre sources-case North Karelia in eastern Finland. Silva Fenn 43:489-05 CrossRef
    30. Oliva AG, Baonza Merino V, Fernández-Golfín Seco JI, Conde García M, Hermoso Prieto E (2006) Effect of growth conditions on wood density of Spanish / Pinus nigra. Wood Sci Technol 40:190-04. doi:10.1007/s00226- 005-0014-0 CrossRef
    31. Oluwafemi OA (2007) Wood properties and selection for rotation length in Caribbean pine ( / Pinus caribaea Morelet) grown in Afaka, Nigeria. Am-Eurasian J Agric Environ Sci 2:359-63
    32. Pardé J, Bouchon J (1988) Dendrométrie. ENGREF, Nancy
    33. Park Y, Koubaa A, Brais S, Mazerolle MJ (2009) Effects of cambial age and stem height on wood density and growth of jack pine grown in boreal stands. Wood Fiber Sci 41:346-58
    34. Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45:573-93
    35. Peltola H, Kilpel?inen A, Sauvala K, R?is?nen T, Ikonen V-P (2007) Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine. Silva Fenn 41:489-05 CrossRef
    36. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York CrossRef
    37. Raymond CA, Joe B (2007) Patterns of basic density variation for / Pinus radiata grown in south-west slopes region of NSW, Australia. N Z J For 37:81-5
    38. Repola J (2006) Models for vertical wood density of Scots pine, Norway spruce and birch stems, and their application to determine average wood density. Silva Fenn 40:673-85
    39. Savidge RA (2003) Tree growth and wood quality. In: Barnett JR, Jeronimidis G (eds) Wood quality and its biological basis. Blackwell, Oxford, pp 1-9
    40. Skovsgaard JP, Bald C, Nord-Larsen T (2011) Functions for biomass and basic density of stem, crown and root system of Norway spruce ( / Picea abies [L.] Karst.) in Denmark. Scand J For Res 26:3-0. doi:10.1080/02827581. 2011.564381 CrossRef
    41. Tsoumis G, Panagiotidis N (1980) Effect of growth conditions on wood quality characteristics of Black pine ( / Pinus nigra Arn.). Wood Sci Technol 14:301-10. doi:10.1007/BF00383458 CrossRef
    42. van Leeuwen M, Hilker T, Coops NC, Frazer G, Wulder MA, Newnham GJ, Culvenor DS (2011) Assessment of standing wood and fiber quality using ground and airborne laser scanning: a review. For Ecol Manag 261:1467-478. doi:10.1016/j.foreco. 2011.01.032 CrossRef
    43. Wilhelmsson L, Arlinger J, Sp?ngberg K, Lundqvist S-O, Grahn T, Hedenberg ?, Olsson L (2002) Models for predicting wood properties in stems of / Picea abies and / Pinus sylvestris in Sweden. Scand J For Res 17:330-50. doi:10.1080/02827580260138080 CrossRef
    44. Yao J (1970) Influence of growth rate on specific gravity and other selected properties of loblolly pine. Wood Sci Technol 4:163-75. doi:10.1007/BF00571851 CrossRef
    45. Zamudio F, Rozenberg P, Baettig R, Vergara A, Ya?ez M, Gantz C (2005) Genetic variation of wood density components in a radiata pine progeny test located in the south of Chile. Ann For Sci 62:105-14. doi:10.1051/forest:2005002 CrossRef
    46. Zhang LY, Deng XW, Lei XD, Xiang WH, Peng CH, Lei PF, Yan WD (2012) Determining stem biomass of / Pinus massoniana L. through variations in basic density. Forestry 85:601-09. doi:10.1093/forestry/cps069 CrossRef
    47. Zhang SY, Simpson D, Morgenstern EK (1996) Variation in the relationship of wood density with growth in 40 black spruce ( / Picea mariana) families grown in New Brunswick. Wood Fiber Sci 28:91-9
    48. Zobel BJ, van Buijtenen JP (1989) Wood variation—its causes and control. Springer, Berlin
    49. Zobel B, Jett JB (1995) Genetics of wood production. Springer, Berlin, 337 p CrossRef
  • 作者单位:Xiangwen Deng (1)
    Liyun Zhang (1)
    Pifeng Lei (1)
    Wenhua Xiang (1)
    Wende Yan (1)

    1. Research Section of Forest Ecology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
  • ISSN:1297-966X
文摘
Context Reliable estimates of wood density (WD) within individual trees could maximize the value of Pinus massoniana for specific end-use. Aim We examined and quantified the axial patterns of WD in trees with different social status in the stands. Methods Wood disks were sampled at the bottom, breast height, and middle of each 1-m sections from 108 stems, harvesting from three social classes in subtropical forests. A mixed-effects model was designed to quantify axial variation. Results The WD at different height was significantly different from the whole-stem WD (WWD) except the relative height of 0.1. An overall decrease of 133.8?kg?m? in WD was found from stem base to top. WD was significantly influenced by relative heights, tree age, and social class. WD of each relative height in mature trees was significantly higher than that of younger trees. Tree social class can affect WD development in the axial direction at age classes 2 and 3. Combining the fixed plus random effects, the final model explained 91?% of the observed variation in WD. Conclusion The WD development patterns in the axial direction vary considerably among tree age, diameter at breast height, and social class. To distinguish and supply timber for specific end-uses, we should use the axial variation in disk WD (DWD) instead of WWD directly. The accurate predictions of WD provided by the model could be used to optimally classify logs into different product classes and maximize economic benefits. We can use DWD at the relative height of 0.1 instead of WWD of a single tree.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700