Characterization of genes for chitin catabolism in Haloferax mediterranei
详细信息    查看全文
  • 作者:Jing Hou (1) (2)
    Jing Han (1)
    Lei Cai (1) (2)
    Jian Zhou (1)
    Yang Lü (3)
    Cheng Jin (3)
    Jingfang Liu (1)
    Hua Xiang (1)
  • 关键词:Chitin ; Catabolism ; Haloarchaea ; Bioplastic ; Bioconversion
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:February 2014
  • 年:2014
  • 卷:98
  • 期:3
  • 页码:1185-1194
  • 全文大小:460 KB
  • 参考文献:1. Andronopoulou E, Vorgias CE (2004) Multiple components and induction mechanism of the chitinolytic system of the hyperthermophilic archaeon / Thermococcus chitonophagus. Appl Microbiol Biotechnol 65:694-02. doi:10.1007/s00253-004-1640-4 CrossRef
    2. Cai S, Cai L, Liu H, Liu X, Han J, Zhou J, Xiang H (2012) Identification of the haloarchaeal phasin (PhaP) that functions in polyhydroxyalkanoate accumulation and granule formation in / Haloferax mediterranei. Appl Environ Microbiol 78:1946-952. doi:10.1128/AEM.07114-11 CrossRef
    3. Cohen-Kupiec R, Chet I (1998) The molecular biology of chitin digestion. Curr Opin Biotechnol 9:270-77. doi:10.1016/S0958-1669(98)80058-X CrossRef
    4. Faure D (2002) The family-3 glycoside hydrolases: from housekeeping functions to host–microbe interactions. Appl Environ Microbiol 68:1485-490. doi:10.1128/AEM.68.4.1485-1490.2002 CrossRef
    5. Gao J, Bauer MW, Shockley KR, Pysz MA, Kelly RM (2003) Growth of hyperthermophilic archaeon / Pyrococcus futiosus on chitin involves two family 18 chitinases. Appl Environ Microbiol 69:3119-128. doi:10.1128/AEM.69.6.3119-3128.2003 CrossRef
    6. Han J, Lu Q, Zhou L, Zhou J, Xiang H (2007) Molecular characterization of the / phaEC Hm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon / Haloarcula marismortui. Appl Environ Microbiol 73:6058-065. doi:10.1128/AEM.00953-07 CrossRef
    7. Han J, Zhang F, Hou J, Liu XQ, Li M, Liu HL, Cai L, Zhang B, Chen YP, Zhou J, Hu SN, Xiang H (2012) Complete genome sequence of the metabolically versatile halophilic archaeon / Haloferax mediterranei, a poly(3-hydroxybutyrate- / co-3-hydroxyvalerate) producer. J Bacteriol 194:4463-464. doi:10.1128/JB.00880-12 CrossRef
    8. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804-07. doi:10.1126/science.1137016 CrossRef
    9. Imoto T, Yagishita K (1971) A simple activity measurement of lysozyme. Agric Biol Chem 35:1154-156 CrossRef
    10. Karlsson M, Stenlid J (2009) Evolution of family 18 glycoside hydrolases: diversity, domain structures and phylogenetic relationships. J Mol Microbiol Biotechnol 16:208-23. doi:10.1159/000151220 CrossRef
    11. Keyhani NO, Roseman S (1996) The chitin catabolic cascade in the marine bacterium / Vibrio furnissii. Molecular cloning, isolation, and characterization of a periplasmic β-N-acetylglucosaminidase. J Biol Chem 271:33425-3432. doi:10.1074/jbc.271.52.33425 CrossRef
    12. Kreuzer M, Schmutzler K, Waege I, Thomm M, Hausner W (2013) Genetic engineering of / Pyrococcus furiosus to use chitin as a carbon source. BMC Biotechnol 13:9. doi:10.1186/1472-6750-13-9 CrossRef
    13. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol (NY) 8:203-26. doi:10.1007/s10126-005-0097-5 CrossRef
    14. Li H, Greene LH (2010) Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding. PLoS One 5:e8654. doi:10.1371/journal.pone.0008654 CrossRef
    15. Liu HL, Han J, Liu XQ, Zhou J, Xiang H (2011) Development of / pyrF-based gene knockout systems for genome-wide manipulation of the archaea / Haloferax mediterranei and / Haloarcula hispanica. J Genet Genomics 38:261-69. doi:10.1016/j.jgg.2011.05.003 CrossRef
    16. Lu Q, Han J, Zhou L, Coker JA, DasSarma P, DasSarma S, Xiang H (2008a) Dissection of the regulatory mechanism of a heat-shock responsive promoter in Haloarchaea: a new paradigm for general transcription factor directed archaeal gene regulation. Nucleic Acids Res 36:3031-042. doi:10.1093/nar/gkn152 CrossRef
    17. Lu QH, Han J, Zhou LG, Zhou J, Xiang H (2008b) Genetic and biochemical characterization of the poly(3-hydroxybutyrate- / co-3-hydroxyvalerate) synthase in / Haloferax mediterranei. J Bacteriol 190:4173-180. doi:10.1128/JB.00134-08 CrossRef
    18. Lü Y, Yang H, Hu H, Wang Y, Rao Z, Jin C (2009) Mutation of Trp137 to glutamate completely removes transglycosyl activity associated with the / Aspergillus fumigatus AfChiB1. Glycoconj J 26:525-34. doi:10.1007/s10719-008-9203-z CrossRef
    19. Lutz RA, Shank TM, Fornari DJ, Haymon RM, Lilley MD, Vondamm KL, Desbruyeres D (1994) Rapid growth at deep-sea vents. Nature 371:663-64. doi:10.1038/371663a0 CrossRef
    20. Mathur NK, Narang CK (1990) Chitin and chitosan, versatile polysaccharides from marine animals. J Chem Educ 67:938-42. doi:10.1021/ed067p938 CrossRef
    21. Nakamura T, Mine S, Hagihara Y, Ishikawa K, Ikegami T, Uegaki K (2008) Tertiary structure and carbohydrate recognition by the chitin-binding domain of a hyperthermophilic chitinase from / Pyrococcus furiosus. J Mol Biol 381:670-80. doi:10.1016/j.jmb.2008.06.006 CrossRef
    22. Oku T, Ishikawa K (2006) Analysis of the hyperthermophilic chitinase from / Pyrococcus furiosus: activity toward crystalline chitin. Biosci Biotechnol Biochem 70:1696-701. doi:10.1271/bbb.60031 CrossRef
    23. Orikoshi H, Nakayama S, Hanato C, Miyamoto K, Tsujibo H (2005) Role of the N-terminal polycystic kidney disease domain in chitin degradation by chitinase A from a marine bacterium, / Alteromonas sp. strain O-7. J Appl Microbiol 99:551-57. doi:10.1111/j.1365-2672.2005.02630.x CrossRef
    24. Rodriguez-Valera F, Juez G, Kushner DJ (1983) / Halobacterium mediterranei spec, nov., a new carbohydrate-utilizing extreme halophile. Syst Appl Microbiol 4:369-81. doi:10.1016/S0723-2020(83)80021-6 CrossRef
    25. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor
    26. Songsiriritthigul C, Lapboonrueng S, Pechsrichuang P, Pesatcha P, Yamabhai M (2010) Expression and characterization of / Bacillus licheniformis chitinase (ChiA), suitable for bioconversion of chitin waste. Bioresour Technol 101:4096-103. doi:10.1016/j.biortech.2010.01.036 CrossRef
    27. Staufenberger T, Imhoff JF, Labes A (2012) First crenarchaeal chitinase found in / Sulfolobus tokodaii. Microbiol Res 167:262-69. doi:10.1016/j.micres.2011.11.001 CrossRef
    28. Tanaka T, Fujiwara S, Nishikori S, Fukui T, Takagi M, Imanaka T (1999) A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon / Pyrococcus kodakaraensis KOD1. Appl Environ Microbiol 65:5338-344
    29. Tanaka T, Fukui T, Fujiwara S, Atomi H, Imanaka T (2004) Concerted action of diacetylchitobiose deacetylase and exo-β-D-glucosaminidase in a novel chitinolytic pathway in the hyperthermophilic archaeon / Thermococcus kodakaraensis KOD1. J Biol Chem 279:30021-0027. doi:10.1074/jbc.M314187200 CrossRef
    30. Tanaka T, Fukui T, Imanaka T (2001) Different cleavage specificities of the dual catalytic domains in chitinase from the hyperthermophilic archaeon / Thermococcus kodakaraensis KOD1. J Biol Chem 276:35629-5635. doi:10.1074/jbc.M105919200 CrossRef
    31. Tsuji H, Nishimura S, Inui T, Kado Y, Ishikawa K, Nakamura T, Uegaki K (2010) Kinetic and crystallographic analyses of the catalytic domain of chitinase from / Pyrococcus furiosus—the role of conserved residues in the active site. FEBS J 277:2683-695. doi:10.1111/j.1742-464X.2010.07685.x CrossRef
    32. Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, S?rlie M, Eijsink VG (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219-22. doi:10.1126/science.1192231 CrossRef
    33. Yoshinobu H, Motosuke S, Keita O, Rie Y, Kimiko E, Toshiaki F, Satoshi N (2006) Characterization of recombinant family 18 chitinase from extremely halophilic archaeon / Halobacterium salinarum strain NRC-1. Chitin Chitosan Res 12:201
  • 作者单位:Jing Hou (1) (2)
    Jing Han (1)
    Lei Cai (1) (2)
    Jian Zhou (1)
    Yang Lü (3)
    Cheng Jin (3)
    Jingfang Liu (1)
    Hua Xiang (1)

    1. State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
    2. University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
    3. State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People’s Republic of China
  • ISSN:1432-0614
文摘
Chitin is the second most abundant natural polysaccharide after cellulose. But degradation of chitin has never been reported in haloarchaea. In this study, we revealed that Haloferax mediterranei, a metabolically versatile haloarchaeon, could utilize colloidal or powdered chitin for growth and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) accumulation, and the gene cluster (HFX_5025-5039) for the chitin catabolism pathway was experimentally identified. First, reverse transcription polymerase chain reaction results showed that the expression of the genes encoding the four putative chitinases (ChiAHme, ChiBHme, ChiCHme, and ChiDHme, HFX_5036-5039), the LmbE-like deacetylase (DacHme, HFX_5027), and the glycosidase (GlyAHme, HFX_5029) was induced by colloidal or powdered chitin, and chiA Hme, chiB Hme, and chiC Hme were cotranscribed. Knockout of chiABC Hme or chiD Hme had a significant effect on cell growth and PHBV production when chitin was used as the sole carbon source, and the chiABCD Hme knockout mutant lost the capability to utilize chitin. Knockout of dac Hme or glyA Hme also decreased PHBV accumulation on chitin. These results suggested that ChiABCDHme, DacHme, and GlyAHme were indeed involved in chitin degradation in H. mediterranei. Additionally, the chitinase assay showed that each chitinase possessed hydrolytic activity toward colloidal or powdered chitin, and the major product of colloidal chitin hydrolysis by ChiABCDHme was diacetylchitobiose, which was likely further degraded to monosaccharides by DacHme, GlyAHme, and other related enzymes for both cell growth and PHBV biosynthesis. Taken together, this study revealed the genes and enzymes involved in chitin catabolism in haloarchaea for the first time and indicated the potential of H. mediterranei as a whole-cell biocatalyst in chitin bioconversion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700