Mucosal vaccine delivery by non-recombinant spores of Bacillus subtilis
详细信息    查看全文
  • 作者:Ezio Ricca (1)
    Loredana Baccigalupi (1)
    Giuseppina Cangiano (1)
    Maurilio De Felice (1)
    Rachele Isticato (1)

    1. Department of Biology
    ; Federico II University of Naples ; via Cinthia ; 80126 ; Naples ; Italy
  • 关键词:Vaccine vehicles ; Vaccine delivery ; Drug delivery ; Surface display
  • 刊名:Microbial Cell Factories
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:1,089 KB
  • 参考文献:1. Magistris, MT (2006) Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv Drug Deliv Rev 58: pp. 52-67 CrossRef
    2. Woodrow, KA, Bennett, KM, Lo, DD (2012) Mucosal vaccine design and delivery. Ann Rev Biomed Eng 14: pp. 17-46 CrossRef
    3. Cutting, SM, Hong, HA, Baccigalupi, L, Ricca, E (2009) Oral vaccine delivery by recombinant spore probiotics. Intern Rev Immunol 28: pp. 487-505 CrossRef
    4. Isticato, R, Ricca, E Spore Surface Display. In: Driks, A, Eichemberger, P eds. (2014) The Bacterial Spore. ASM press, Washigton DC, US
    5. Detmer, A, Glenting, J (2006) Live bacterial vaccines鈥攁 review and identification of potential hazards. Microb Cell Fact 5: pp. 23 CrossRef
    6. Fritze, D Taxonomy and systematics of the aerobic endospore forming bacteria: Bacillus and related genera. In: Ricca, E, Henriques, AO, Cutting, SM eds. (2004) Bacterial Spore Formers. Horizon Biosience, Norfolk, UK, pp. 17-34
    7. McKenney PT, Driks A, Eichemberger P: The Bacillus subtilis endospore: assembly and functions of the multilayered coat. / Nat Rev Microbiol 2013, 11:33鈥?4.
    8. Dworkin, J, Shah, IM (2010) Exit from dormancy in microbial organisms. Nat Rev Microbiol 8: pp. 890-896 CrossRef
    9. Higgins D, Dworkin J: Recent progress in Bacillus subtilis sporulation. / FEMS Microbiol Rev 2012, 36:131鈥?48.
    10. Tang J, Krajcikova D, Zhu R, Ebner A, Cutting S, Gruber HJ, Barak I, Hinterdorfer P: Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore. / J Mol Recognit 2007, 20:483鈥?89.
    11. Ramamurthi KS, Losick R: ATP-driven self-assembly of a morphogenetic protein in Bacillus subtilis . / Mol Cell 2008, 31:406鈥?14.
    12. Chen X, Mahadevan L, Driks A, Sahin O: Bacillus spores as building blocks for stimuliresponsive materials and nanogenerators. / Nature Nanotechnol 2014, 9:137鈥?41.
    13. Driks, A (2003) The dynamic spore. Proc Natl Acad Sci U S A 100: pp. 3007-3009 CrossRef
    14. Plomp M, Leighton TJ, Wheeler KE, Malkin AJ: The high-resolution architecture and structural dynamics of Bacillus spores. / Biophys J 2005, 88:603鈥?08.
    15. Nicholson WL: Roles of Bacillus endospores in the environment. / Cell Mol Life Sci 2002, 59:410鈥?16.
    16. Nicholson WL: Roles of Bacillus endospores in the environment. / Cell Mol Life Sci 2002, 59:410鈥?16.
    17. Hong HA, To E, Fakhry S, Baccigalupi L, Ricca E, Cutting SM: Defining the natural habitat of Bacillus spore-formers. / Res Microbiol 2009, 160:375鈥?79.
    18. Fakhry, S, Sorrentini, I, Ricca, E, Felice, M, Baccigalupi, L (2008) Characterisation of spore forming Bacilli isolated from the human gastrointestinal tract. J Appl Microbiol 105: pp. 2178-2186 CrossRef
    19. Casula G, Cutting SM: Bacillus probiotics: spore germination in the gastrointestinal tract. / Appl Environ Microbiol 2002, 68:2344鈥?352.
    20. Cutting, SM (2011) Bacillus probiotics. Food Microbiol 28: pp. 214-220 CrossRef
    21. Duc, LH, Hong, AH, Nguyen, QU, Cutting, SM (2004) Intracellular fate and immunogenicity of B. subtilis spores. Vaccine 22: pp. 1873-1885 CrossRef
    22. Fujita M, Musch MW, Nakagawa Y, Hu S, Alverdy J, Kohgo Y, Schneewind O, Jabri B, Chang EB: The Bacillus subtilis quorum-sensing molecule CSF contribute to intestinal homoestasis via OCTN2, a host cell membrane transporter. / Cell Host Microb 2007, 1:299鈥?08.
    23. Ceragioli M, Cangiano G, Esin S, Ghelardi E, Ricca E, Senesi S: Phagocytosis, germination and killing of Bacillus subtilis spores presenting heterologous antigens in human macrophages. / Microbiology 2009, 155:338鈥?46.
    24. Rhee, K-J, Sethupathi, P, Driks, A, Lanning, DK, Knight, KL (2004) Role of commensal bacteria in development of gut-associated lymphoid tissue and preimmune antibody repertoire. J Immunol 172: pp. 1118-1124 CrossRef
    25. D鈥橝rienzo R, Maurano F, Mazzarella G, Luongo D, Stefanile R, Ricca E, Rossi M: Bacillus subtilis spores reduce susceptibility to Citrobacter rodentium -mediated enteropathy in a mouse model. / Res Microbiol 2006, 157:891鈥?97.
    26. Isticato R, Cangiano G, Tran T-H, Ciabattini A, Medaglini D, Oggioni MR, De Felice M, Pozzi G, Ricca E: Surface display of recombinant proteins on Bacillus subtilis spores. / J Bacteriol 2001, 183:6294鈥?301.
    27. Duc, LH, Huynh, HA, Fairweather, N, Ricca, E, Cutting, SM (2003) Bacterial spores as vaccine vehicles. Infect Immun 71: pp. 2810-2818 CrossRef
    28. Mauriello EMF, Cangiano G, Maurano F, Saggese V, De Felice M, Rossi M, Ricca E: Germination-independent induction of cellular immune response by Bacillus subtilis spores displaying the C fragment of the tetanus toxin. / Vaccine 2007, 25:788鈥?93.
    29. Iwanicki A, Pi膮tek I, Stasi艂oj膰 M, Grela A, L臋ga T, Obuchowski M, Hinc K: A system of vectors for Bacillus subtilis spore surface display. / Microb Cell Fact 2014, 13:30.
    30. Huang, JM, Hong, HA, Tong, H, Hoang, TH, Brisson, A, Cutting, SM (2010) Mucosal delivery of antigens using adsorption to bacterial spores. Vaccine 28: pp. 1021-1030 CrossRef
    31. Sirec T, Strazzulli A, Isticato R, De Felice M, Moracci M, Ricca E: Adsorption of beta-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis . / Microb Cell Fact 2012, 11:100.
    32. Kazakov S, Bonvouloir E, Gazaryan I: Physicochemical characterization of natural ionic microreservoirs: Bacillus subtilis dormant spores. / J Phys Chem 2008, 112:2233鈥?244.
    33. Gu J, Yang R, Hua X, Zhang W, Zhao W: Adsorption-based immobilization of Caldicellulosiruptor saccharolyticus cellobiose 2-epimerase on Bacillus subtilis spores. / Biotechnol Appl Biochem 2014. in press doi:10.1002/bab.1262.
    34. Song M, Hong HA, Huang JM, Colenutt C, Khang DD, Nguyen TV, Park SM, Shim BS, Song HH, Cheon IS, Jang JE, Choi JA, Choi YK, Stadler K, Cutting SM: Killed Bacillus subtilis spores as a mucosal adjuvant for an H5N1 vaccine. / Vaccine 2012, 30:3266鈥?277.
    35. Delogu, G, Howard, A, Collins, FM, Morris, SL (2000) DNA vaccination against tuberculosis: expression of a ubiquitin-conjugated tuberculosis protein enhances antimycobacterial immunity. Infect Immun 68: pp. 3097-3102 CrossRef
    36. Reljic, R, Sibley, L, Huang, JM, Pepponi, I, Hoppe, A, Hong, HA, Cutting, SM (2013) Mucosal vaccination against tuberculosis using inert bioparticles. Infect Immun 81: pp. 4071-4080 CrossRef
    37. Isticato R, Sirec T, Treppiccione L, Maurano F, De Felice M, Rossi M, Ricca E: Non-recombinant display of the B subunit of the heat labile toxin of Escherichia coli on wild type and mutant spores of Bacillus subtilis . / Microb Cell Fact 2013, 12:98.
    38. Mauriello EMF, Duc LH, Isticato R, Cangiano G, Hong HA, De Felice M, Ricca E, Cutting SM: Display of heterologous antigens on the Bacillus subtilis spore coat using cotc as a fusion partner. / Vaccine 2004, 22:1177鈥?187.
    39. Kim J-M, Park S-M, Kim J-A, J-a P, M-h Y, Kim N-S, Bae J-L, Park GS, Jang J-S, Yang M-S, Kim D-H: Functional pentameric formation via coexpression of the Escherichia coli heat-labile enterotoxin B subunit and its fusion protein subunit with a Neutralizing Epitope of ApxIIA Exotoxin improves the mucosal immunogenicity and protection against challenge by Actinobacillus pleuropneumoniae . / Clin Vaccine Immunol 2011, 18:2168鈥?177.
    40. Ricci S, Medaglini D, Rush CM, Marcello A, Peppoloni S, Manganelli R, Pal煤 G, Pozzi G: Immunogenicity of the B monomer of Escherichia coli heat labile toxin expressed on the surface of Streptococcus gordonii . / Infect Immun 2000, 68:760鈥?66.
    41. Nashar TO, Webb HM, Eaglestone S, Williams NA, Hirst TR: Potent immunogenicity of the B subunits of Escherichia coli heat-labile enterotoxin: receptor binding is essential and induces differential modulation of lymphocyte subsets. / Proc Natl Acad Sci U S A 1996, 93:226鈥?30.
    42. Nashar TO, Betteridge ZE, Mitchell RN: Evidence for a role of ganglioside GM1 in antigen presentation: binding enhances presentation of Escherichia coli enterotoxin B subunit (EtxB) to CD4(+) T cells. / Int Immunol 2001, 13:541鈥?51.
    43. Isticato, R, Cangiano, G, Felice, M, Ricca, E Display of Molecules on the Spore Surface. In: Ricca, E, Henriques, AO, Cutting, SM eds. (2004) Bacterial Spore Formers. Horizon Biosience, Norfolk, UK, pp. 193-200
    44. Pesce G, Rusciano G, Sirec T, Isticato R, Sasso A, Ricca E: Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers. / Colloids Surf B Biointerfaces 2014, 116C:568鈥?75.
    45. Nguyen VA, Huynh HA, Hoang TV, Ninh NT, Pham AT, Nguyen HA, Phan TN, Cutting SM: Killed Bacillus subtilis spores expressing streptavidin: a novel carrier of drugs to target cancer cells. / J Drug Target 2013, 21:528鈥?41.
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Applied Microbiology
    Environmental Engineering/Biotechnology
  • 出版者:BioMed Central
  • ISSN:1475-2859
文摘
Development of mucosal vaccines strongly relies on an efficient delivery system and, over the years, a variety of approaches based on phages, bacteria or synthetic nanoparticles have been proposed to display and deliver antigens. The spore of Bacillus subtilis displaying heterologous antigens has also been considered as a mucosal vaccine vehicle, and shown able to conjugate some advantages of live microrganisms with some of synthetic nanoparticles. Here we review the use of non-recombinant spores of B. subtilis as a delivery system for mucosal immunizations. The non-recombinant display is based on the adsorption of heterologous molecules on the spore surface without the need of genetic manipulations, thus avoiding all concerns about the use and environmental release of genetically modified microorganisms. In addition, adsorbed molecules are stabilized and protected by the interaction with the spore, suggesting that this system could reduce the rapid degradation of the antigen, often observed with other delivery systems and identified as a major drawback of mucosal vaccines.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700