Molecular responses of cells to 2-mercapto-1-methylimidazole gold nanoparticles (AuNPs)-mmi: investigations of histone methylation changes
详细信息    查看全文
  • 作者:Arianna Polverino (1)
    Angela Longo (2)
    Aldo Donizetti (3)
    Denise Drongitis (3)
    Maria Frucci (1) (5)
    Loredana Schiavo (2)
    Gianfranco Carotenuto (2)
    Luigi Nicolais (4)
    Marina Piscopo (3)
    Emilia Vitale (1) (6)
    Laura Fucci (3)

    1. Institute of Cybernetics
    ; National Research Council (CNR) of Pozzuoli ; Naples ; Italy
    2. Institute for Polymers
    ; Composites and Biomaterials ; National Research Council (CNR) ; Naples ; Italy
    3. Department of Biology
    ; University of Naples Federico II ; Naples ; Italy
    5. Institute for High-Performance Computing and Networking
    ; National Research Council (CNR) ; Naples ; Italy
    4. Department of Chemical
    ; Materials and Industrial Engineering DICMAPI ; University of Naples Federico II ; Naples ; Italy
    6. Institute of Protein Biochemistry (IBP)
    ; National Research Council (CNR) ; Via Pietro Castellino n. 111 ; 80131 ; Naples ; Italy
  • 关键词:Gold nanoparticles (AuNPs) ; (AuNPs) ; mmi ; Histone dimethylation ; Chromatin
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:16
  • 期:7
  • 全文大小:1,263 KB
  • 参考文献:1. Alkilany, AM, Murphy, CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?. J Nanopart Res 12: pp. 2313-2333 CrossRef
    2. Bannister, AJ, Zegerman, P, Partridge, JF, Miska, EA, Thomas, JO, Allshire, RC, Kouzarides, T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: pp. 120-124 CrossRef
    3. Brancati N, Frucci M, Sanniti di Baja G (2008) Image segmentation via histogram thresholding and morphological features analysis, image analysis and recognition. In: Campilho A, Kamel M (eds) Vol LNCS 5112. Springer, Berlin, pp 132鈥?41
    4. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol derivatised gold nanoparticles in a two phase liquid/liquid system. J Chem Soc Chem Commun 聽7:801鈥?02
    5. Cardone, G, Carotenuto, G, Conte, P, Alonzo, G (2010) Synthesis and characterization of a novel high luminescent gold-2-mercapto-1 methylimidazole complex. Luminescence 26: pp. 506-509 CrossRef
    6. Chithrani, BD, Ghazani, AA, Chan, WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6: pp. 662-668 CrossRef
    7. Chuang, SM, Lee, YH, Liang, RY, Roam, GD, Zeng, ZM, Tu, HF, Wang, SK, Chueh, PJ (2013) Extensive evaluations of the cytotoxic effects of gold nanoparticles. Biochim Biophys Acta 1830: pp. 4960-4973 CrossRef
    8. Coradeghini, R, Gioria, S, Garc铆a, CP, Nativo, P, Franchini, F, Gilliland, D, Ponti, J, Rossi, F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217: pp. 205-216 CrossRef
    9. Daniel, MC, Astruc, D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104: pp. 293-346 CrossRef
    10. Desai, N (2012) Challenges in development of nanoparticle-based therapeutics. AAPS J 14: pp. 282-295 CrossRef
    11. Freese, C, Uboldi, C, Gibson, M, Unger, RE, Weksler, BB, Romero, IA, Courand, PO, Kirkpatrick, CJ (2012) Uptake and cytotoxicity of citrate-coated gold nanospheres: comparative studies on human endothelial and epithelial cells. Part Fibre Toxicol 9: pp. 23-33 CrossRef
    12. Frucci, M, Arcelli, C, Baja, GS (2006) On the hierarchical assignment to the foreground of grey-level image subsets. Int J Pattern Recognit Artif Intell 20: pp. 897-912 CrossRef
    13. Goodman, CM, McCusker, CD, Yilmaz, T, Rotello, VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15: pp. 897-900 CrossRef
    14. Ito, T (2007) Role of histone modification in chromatin dynamics. J Biochem 141: pp. 609-614 CrossRef
    15. Jenuwein, T, Allis, CD (2001) Translating the histone code. Science 293: pp. 1074-1080 CrossRef
    16. Jing X, Cao X, Wang L, Lan T, Li Y, Xie G (2014) DNA-AuNPs based signal amplification for highly sensitive detection of DNA methylation, methyltransferase activity and inhibitor screening. Biosens Bioelectron. doi:10.1016/j.bios.2014.02.035
    17. Khlebtsov, N, Dykman, L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40: pp. 1647-1671 CrossRef
    18. Li, N, Zhao, P, Astruc, D (2014) Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed Engl 53: pp. 1756-1789 CrossRef
    19. Ma, X, Wu, Y, Jin, S, Tian, Y, Zhang, X, Zhao, Y, Yu, L, Liang, XJ (2011) Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5: pp. 8629-8639 CrossRef
    20. Martin, C, Zhang, Y (2005) The diverse functions of histone lysine methylation. Nat RevMol Cell Biol 6: pp. 838-849 CrossRef
    21. Mieszawska, AJ, Mulder, WJ, Fayad, ZA, Cormode, DP (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 10: pp. 831-847 CrossRef
    22. Mosch, K, Franz, H, Soeroes, S, Singh, PB, Fischle, W (2011) HP1 recruits activity-dependent neuroprotective protein to H3K9me3 marked pericentromeric heterochromatin for silencing of major satellite repeats. PLoS One 6: pp. e15894 CrossRef
    23. Nativo, P, Prior, IA, Brust, M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2: pp. 1639-1644 CrossRef
    24. Ng, CT, Dheen, ST, Yip, WC, Ong, CN, Bay, BH, Lanry Yung, LY (2011) The induction of epigenetic regulation of PROS1 gene in lung fibroblasts by gold nanoparticles and implications for potential lung injury. Biomaterials 32: pp. 7609-7615 CrossRef
    25. Noma, K, Allis, CD, Grewal, SI (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293: pp. 1150-1155 CrossRef
    26. Pan, Y, Neuss, S, Leifert, A, Fischler, M, Wen, F, Simon, U, Schmid, G, Brandau, W, Jahnen-Dechent, W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3: pp. 1941-1949 CrossRef
    27. Pan, Y, Leifert, A, Ruau, D, Neuss, S, Bornemann, J, Schmid, G, Brandau, W, Simon, U, Jahnen-Dechent, W (2009) Gold nanoparticles of diameter 1.4聽nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5: pp. 2067-2076 CrossRef
    28. Papasani, MR, Wang, G, Hill, RA (2012) Gold nanoparticles: the importance of physiological principles to devise strategies for targeted drug delivery. Nanomedicine 8: pp. 804-814 CrossRef
    29. Passaro, D, Rana, G, Piscopo, M, Viggiano, E, Luca, B, Fucci, L (2010) Epigenetic chromatin modifications in the cortical spreading depression. Brain Res 1329: pp. 1-9 CrossRef
    30. Praetorius, NP, Mandal, TK (2007) Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul 1: pp. 37-51 CrossRef
    31. Rana, G, Donizetti, A, Virelli, G, Piscopo, M, Viggiano, E, Luca, B, Fucci, L (2012) Cortical spreading depression differentially affects lysine methylation of H3 histone at neuroprotective genes and retrotransposon sequences. Brain Res 1467: pp. 113-119 CrossRef
    32. Ruthenburg, AJ, Allis, CD, Wysocka, J (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25: pp. 15-30 CrossRef
    33. Shukla, R, Bansal, V, Chaudhary, M, Basu, A, Bhonde, RR, Sastry, M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21: pp. 10644-10654 CrossRef
    34. Sperling, RA, Gil, PR, Zhang, F, Zanella, M, Parak, WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37: pp. 1896-1908 CrossRef
    35. Stegurov谩 L, Dr谩berov谩 E, Barto拧 A, Dr谩ber P, R铆pov谩 D, Dr谩ber P (2014) Gold nanoparticle-based immuno-PCR for detection of tau protein in cerebrospinal fluid. J Immunol Methods. doi:10.1016/j.jim.2014.03.007
    36. Tomuleasa C, Soritau O, Orza A, Dudea M, Petrushev B, Mosteanu O, Susman S, Florea A, Pall E, Aldea M, Kacso G, Cristea V, Berindan-Neagoe I, Irimie A (2012) Gold nanoparticles conjugated with cisplatin/doxorubicin/capecitabine lower the chemoresistance of hepatocellular carcinoma-derived cancer cells. J Gastrointestin Liver Dis 21(2):187鈥?96
    37. Turkevich, J, Stevenon, PC, Hillier, J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11: pp. 55-75 CrossRef
    38. Wu, Z, Jin, R (2010) On the ligand鈥檚 role in the fluorescence of gold nanoclusters. Nano Lett 10: pp. 2568-2573 CrossRef
    39. Wu, H, Min, J, Lunin, VV, Antoshenko, T, Dombrovski, L, Zeng, H, Allali-Hassani, A, Campagna-Slater, V, Vedadi, M, Arrowsmith, CH, Plotnikov, AN, Schapira, M (2010) Structural biology of human H3K9 methyltransferases. PLoS One 5: pp. e8570 CrossRef
    40. Yang, Y, Qu, Y, L眉, X (2010) Global gene expression analysis of the effects of gold nanoparticles on human dermal fibroblasts. J Biomed Nanotechnol 6: pp. 234-246
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
While nanomedicine has an enormous potential to improve the precision of specific therapy, the ability to efficiently deliver these materials to regions of disease in vivo remains limited. In this study, we describe analyses of (AuNPs)-mmi cellular intake via fluorescence microscopy and its effects on H3K4 and H3K9 histone dimethylation. Specifically, we studied the level of H3K4 dimethylation in serving the role of an epigenetic marker of euchromatin, and of H3K9 dimethylation as a marker of transcriptional repression in four different cell lines. We analyzed histone di-methyl-H3K4 and di-methyl-H3K9 using either variable concentrations of nanoparticles or variable time points after cellular uptake. The observed methylation effects decreased consistently with decreasing (AuNPs)-mmi concentrations. Fluorescent microscopy and a binarization algorithm based on a thresholding process with RGB input images demonstrated the continued presence of (AuNPs)-mmi in cells at the lowest concentration used. Furthermore, our results show that the treated cell line used is able to rescue the untreated cell phenotype.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700