Tribological properties tests and simulations of the nano-micro multilevel porous self-lubricating PEEK composites with ionic liquid lubrication
详细信息    查看全文
  • 作者:Huaiyuan Wang ; Meiling Li ; Dujuan Liu ; Yiming Zhao…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:51
  • 期:8
  • 页码:3917-3927
  • 全文大小:2,142 KB
  • 参考文献:1.Wang Y, Liu Z (2008) Tribological properties of high temperature self-lubrication metal ceramics with an interpenetrating network. Wear 265(11):1720–1726CrossRef
    2.Lu Y, Liu Z (2013) A calculated model for the porosity effect of a self-lubricating composite on its lubrication property. Tribol Int 60:169–175CrossRef
    3.Friedrich K, Lu Z, Hager A (1995) Recent advances in polymer composites’ tribology. Wear 190(2):139–144CrossRef
    4.Chang L, Zhang Z, Ye L, Friedrich K (2007) Tribological properties of high temperature resistant polymer composites with fine particles. Tribol Int 40(7):1170–1178CrossRef
    5.Lu J, Yang S, Wang J, Xue Q (2001) Mechanical and tribological properties of Ni-based alloy/CeF 3/graphite high temperature self-lubricating composites. Wear 249(12):1070–1076CrossRef
    6.Theiler G, Gradt T (2010) Friction and wear of PEEK composites in vacuum environment. Wear 269(3):278–284CrossRef
    7.Unal H, Sen U, Mimaroglu A (2004) Dry sliding wear characteristics of some industrial polymers against steel counterface. Tribol Int 37(9):727–732CrossRef
    8.Zhang X, Pei X, Wang Q (2009) The tribological properties of acid-and diamine-modified carbon fiber reinforced polyimide composites. Mater Chem Phys 115(2):825–830CrossRef
    9.Klaas N, Marcus K, Kellock C (2005) The tribological behaviour of glass filled polytetrafluoroethylene. Tribol Int 38(9):824–833CrossRef
    10.Ravindran P, Manisekar K, Narayanasamy R, Narayanasamy P (2013) Tribological behaviour of powder metallurgy-processed aluminium hybrid composites with the addition of graphite solid lubricant. Ceram Int 39(2):1169–1182CrossRef
    11.Kato H, Takama M, Iwai Y, Washida K, Sasaki Y (2003) Wear and mechanical properties of sintered copper–tin composites containing graphite or molybdenum disulfide. Wear 255(1):573–578CrossRef
    12.Yu L, Yang S, Liu W, Xue Q (2000) An investigation of the friction and wear behaviors of polyphenylene sulfide filled with solid lubricants. Polym Eng Sci 40(8):1825–1832CrossRef
    13.Sawyer WG, Freudenberg KD, Bhimaraj P, Schadler LS (2003) A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254(5):573–580CrossRef
    14.Myshkin N, Petrokovets M, Kovalev A (2006) Tribology of polymers: adhesion, friction, wear, and mass-transfer. Tribol Int 38(11):910–921
    15.Liu W, Ye C, Gong Q, Wang H, Wang P (2002) Tribological performance of room-temperature ionic liquids as lubricant. Tribol Lett 13(2):81–85CrossRef
    16.Ye C, Liu W, Chen Y, Yu L (2001) Room-temperature ionic liquids: a novel versatile lubricant. Chem Commun 21:2244–2245CrossRef
    17.Fan X, Xia Y, Wang L, Pu J, Chen T, Zhang H (2014) Study of the conductivity and tribological performance of ionic liquid and lithium greases. Tribol Lett 53(1):281–291CrossRef
    18.Yoo S-S, Kim D-E (2013) Minimum lubrication technique using silicone oil for friction reduction of stainless steel. Int J Precis Eng Manuf 14(6):875–880CrossRef
    19.Wang D, Huang Y, Wu L, Shen J (2013) Mechanical, acoustic and electrical properties of porous Ti-based metallic glassy/nanocrystalline composites. Mater Des 44:69–73CrossRef
    20.An HJ, Kim JS, Kim K-Y, Lim DY, Kim DH (2014) Mechanical and thermal properties of long carbon fiber-reinforced polyamide 6 composites. Fiber Polym 15(11):2355–2359CrossRef
    21.Zhou S, Zhang Q, Wu C, Huang J (2013) Effect of carbon fiber reinforcement on the mechanical and tribological properties of polyamide6/polyphenylene sulfide composites. Mater Des 44:493–499CrossRef
    22.Long C-G, Wang X-Y (2004) Wear and mechanical properties of Ekonol/G/MoS 2/PEEK composites. J Mater Sci 39(4):1499–1501. doi:10.​1023/​B:​JMSC.​0000013928.​77342.​37 CrossRef
    23.Fu H, Liao B, F-J Qi, B-C Sun, A-P Liu, D-L Ren (2008) The application of PEEK in stainless steel fiber and carbon fiber reinforced composites. Composites Part B 39(4):585–591CrossRef
    24.Brostow W, Kovačevic V, Vrsaljko D, Whitworth J (2010) Tribology of polymers and polymer-based composites. J Mater Edu 32(5):273
    25.Myshkin N, Grigoriev AY, Chizhik S, Choi K, Petrokovets M (2003) Surface roughness and texture analysis in microscale. Wear 254(10):1001–1009CrossRef
    26.Mu L, Shi Y, Feng X, Zhu J, Lu X (2012) The effect of thermal conductivity and friction coefficient on the contact temperature of polyimide composites: experimental and finite element simulation. Tribol Int 53:45–52CrossRef
    27.Tsyntsaru N, Kavas B, Sort J, Urgen M, Celis J-P (2014) Mechanical and frictional behaviour of nano-porous anodised aluminium. Mater Chem Phys 148(3):887–895CrossRef
    28.Tu J, Yang Y, Wang L, Ma X, Zhang X (2001) Tribological properties of carbon-nanotube-reinforced copper composites. Tribol Lett 10(4):225–228CrossRef
    29.Kajdas C (1994) Importance of anionic reactive intermediates for lubricant component reactions with friction surfaces. Lubr Sci 6(3):203–228CrossRef
    30.Brostow W, Deborde J-L, Jaclewicz M, Olszynski P (2003) Tribology with emphasis on polymers: friction, scratch resistance and wear. J Mater Edu 25(4/6):119–132
    31.Jia Y, Yan W, Liu H-Y (2012) Carbon fibre pullout under the influence of residual thermal stresses in polymer matrix composites. Comput Mater Sci 62:79–86CrossRef
    32.Hussein A, Hao L, Yan C, Everson R (2013) Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des 52:638–647CrossRef
    33.Perić M, Tonković Z, Rodić A, Surjak M, Garašić I, Boras I, Švaić S (2014) Numerical analysis and experimental investigation of welding residual stresses and distortions in a T-joint fillet weld. Mater Des 53:1052–1063CrossRef
    34.Incropera FP (2011) Introduction to heat transfer. Wiley
    35.Wang H, Liu D, Yan L, Wang C, Yang S, Zhu Y (2014) Tribological simulation of porous self-lubricating PEEK composites with heat-stress coupled field. Tribol Int 77:43–49CrossRef
    36.Nakouzi S, Pancrace J, Schmidt F, Le Maoult Y, Berthet F (2010) Curing simulation of composites coupled with infrared heating. Int J Mater Form 3(1):587–590CrossRef
  • 作者单位:Huaiyuan Wang (1)
    Meiling Li (1)
    Dujuan Liu (1)
    Yiming Zhao (1)
    Yanji Zhu (1)

    1. College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Porous self-lubricating PEEK composites (PSPC) with nano-micro multilevel pore structure (N-MPS) incorporated by ionic liquid were fabricated via molding–leaching and vacuum suction technologies. The tribological properties of PSPC with different porosities were investigated using a tribotester under an applied load of 250 N and a sliding speed of 0.69 m s−1. Moreover, a finite element (FE) model with N-MPS was firstly developed to reveal the nano-micron scale collaborative lubrication mechanism of the composites. The temperature field, von Mises stress, and displacement fields of the FE model under different porosity conditions were studied in heat-stress coupled field using ANSYS software. The accuracy of the simulation results was verified by comparing them with corresponding experimental results with the error values <10 %. Both the experiment and simulation results showed that the PSPC exhibited excellent tribological properties when the porosity was 16.8 %. It reflects that FE method is capable of studying the self-lubricating process of nano-micro multilevel porous composites with an optimized FE model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700