Study on the number and location of measurement points for an MFD perimeter control scheme: a case study of Zurich
详细信息    查看全文
  • 作者:Javier Ortigosa ; Monica Menendez…
  • 关键词:Macroscopic fundamental diagram ; Network fundamental diagram ; Urban traffic ; Perimeter control implementation ; Zurich ; Traffic measurements ; Traffic monitoring
  • 刊名:EURO Journal on Transportation and Logistics
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:3
  • 期:3-4
  • 页码:245-266
  • 全文大小:2,325 KB
  • 参考文献:1. Aboudolas K, Geroliminis N (2013) Perimeter and boundary flow control in multi-reservoir heterogeneous networks. Transp Res Part B Methodol 55:265-81 CrossRef
    2. Buisson C, Ladier C (2009) Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams. Transp Res Record 2124(1):127-36 CrossRef
    3. Courbon T, Leclercq L (2011) Cross-comparison of macroscopic fundamental diagram estimation methods. Procedia-Social Behav Sci 20:417-26 CrossRef
    4. Daganzo C, Geroliminis N (2008) An analytical approximation for the macroscopic fundamental diagram of urban traffic. Transp Res Part B Methodol 42(9):771-81 CrossRef
    5. Daganzo C, Gayah V, Gonzales E (2011) Macroscopic relations of urban traffic variables: bifurcations, multivaluedness and instability. Transp Res Part B Methodol 45(1):278-88 CrossRef
    6. Daganzo CF (2007) Urban gridlock: macroscopic modeling and mitigation approaches. Transp Res Part B Methodol 41(1):49-2 CrossRef
    7. Ehlert A, Bell M, Grosso S (2006) The optimisation of traffic count locations in road networks. Transp Res Part B Methodol 40(6):460-79 CrossRef
    8. Fei X, Mahmassani H, Eisenman S (2007) Sensor coverage and location for real-time traffic prediction in large-scale networks. Transp Res Record 2039(1):1-5 CrossRef
    9. Gayah V, Dixit V (2013) Using mobile probe data and the macroscopic fundamental diagram to estimate network densities: tests using micro-simulation. Transp Res Record (in press)
    10. Menendez M, Ge Q (2012) Final report on the calibration study for VISSIM (CSV). Technical report for Stadt Zürich, Dienstabteilung Verkehr, by the Institute for Transport Planning and Systems, ETH Zurich
    11. Geroliminis N, Daganzo C (2008) Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transp Res Part B Methodol 42(9):759-70 CrossRef
    12. Geroliminis N, Sun J (2011) Properties of a well-defined macroscopic fundamental diagram for urban traffic. Transp Res Part B Methodol 45(3):605-17 CrossRef
    13. Geroliminis N, Haddad J, Ramezani M (2013) Optimal perimeter control for two urban regions with macroscopic fundamental diagrams: A model predictive approach. IEEE Trans Intell Transp Syst 14(1):348-59 CrossRef
    14. Glover F (1989) Tabu search part 1. ORSA J comput 1(3):190-06 CrossRef
    15. Godfrey J (1969) The mechanism of a road network. Traffic Eng Control 11(7):323-27
    16. Haddad J, Geroliminis N (2012) On the stability of traffic perimeter control in two-region urban cities. Transp Res Part B Methodol 46(9):1159-176 CrossRef
    17. Heimgartner C (2012) Virtual its-evaluation- establishment of micro-simulation for the city center of zurich. In: 19th ITS World Congress, Vienna
    18. Herman R, Prigogine I (1979) A two-fluid approach to town traffic. Science 204(4389):148-51 CrossRef
    19. Ji Y, Daamen W, Hoogendoorn S, Hoogendoorn-Lanser S, Qian X (2010) Investigating the shape of the macroscopic fundamental diagram using simulation data. Transp Res Record 2161(1):40-8 CrossRef
    20. Kanton-Zurich (2007) Gesamtverkehrsmodell des Kantons Zuerich. Volkswirtschaftsdirektion des Kantons Zuerich, Amt fuer Verkehr, Abteilung Gesamtverkehr
    21. Keyvan-Ekbatani M, Kouvelas A, Papamichail I, Papageorgiou M (2012) Exploiting the fundamental diagram of urban networks for feedback-based gating. Transp Res Part B Methodol 46(10):1393-403 CrossRef
    22. Keyvan-Ekbatani M, Papageorgiou M, Papamichail I (2013) Urban congestion gating control based on reduced operational network fundamental diagrams. Transp Res Part C Emerg Technol 33:74-7 CrossRef
    23. Knoop V, Hoogendoorn S, Van Lint JW (2012) Routing strategies based on macroscopic fundamental diagram. Transp Res Record 2315(1):1-0 CrossRef
    24. Mahmassani H, Saberi M, Ali Zockaie K (2013) Urban network gridlock: Theory, characteristics, and dynamics. Procedia-Social Behav Sci 80:79-8 CrossRef
    25. Mazloumian A, Geroliminis N, Helbing D (2010) The spatial variability of vehicle densities as determinant of urban network capacity. Philos Trans A Math Phys Eng Sci 368(1928):4627-647 CrossRef
    26. Schiffmann L (2013) Measuring the / mfd of zurich: Identifying and evaluating strategies for efficient fixed monitoring resources. Master’s thesis, ETH, Zurich
    27. Thomson JM (1967) Speeds and flows of traffic in central london: 2. speed-flow relations. Traffic Eng Control 8(12):721-25
    28. Wardrop J (1968) Journey speed and flow in central urban areas. Traffic Eng Control 9(11):528-32
    29. Yang H, Zhou J (1998) Optimal traffic counting locations for origin-destination matrix estimation. Transp Res Part B Methodol 32(2):109-26 CrossRef
    30. Zheng N, Waraich R, Axhausen K, Geroliminis N (2012) A dynamic cordon pricing scheme combining the macroscopic fundamental diagram and an agent-based traffic model. Transp Res Part A Policy Pract 46(8):1291-303 CrossRef
  • 作者单位:Javier Ortigosa (1)
    Monica Menendez (1)
    Hector Tapia (2)

    1. Institute for Transport Planning and Systems (IVT), ETH, Zurich, Switzerland
    2. Photonfocus AG, ?Lachen, Switzerland
  • ISSN:2192-4384
文摘
The goal of this paper is to evaluate the data requirements for a possible implementation of a macroscopic fundamental diagram (MFD) control scheme in an urban area. Particularly, we have studied the accuracy of MFDs created using only a percentage of the links (i.e., streets). This is especially useful because monitoring resources are often scarce, and most cities do not have access to the large amount of information that is typically associated with the construction of an MFD. We evaluated several strategies that cities typically use to place fixed monitoring devices (e.g., loop detectors), and compared them with a quasi-optimal way to choose the links. The results show that independently of the strategy used for link selection, a minimum of 25?% of network coverage, according to our accuracy methodology, ensures an average error in density ratios below 15 percentage points (ppts). Based on the particular case of the city of Zurich, we also analyzed the feasibility of implementing an MFD control scheme with the links that are currently monitored. Results are very encouraging, showing an average error below 9 ppts. Although all results were obtained with a VISSIM microsimulation model of the inner city of Zurich, we believe the knowledge and methodology presented here can be transferred to other urban areas. In fact, we are hopeful that this research can contribute to making the implementation of an MFD control scheme feasible for many cities.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700