Prediction of northern summer low-frequency circulation using a high-order vector auto-regressive model
详细信息    查看全文
  • 作者:Lei Wang ; Mingfang Ting ; David Chapman ; Dong Eun Lee ; Naomi Henderson…
  • 关键词:Low frequency variability ; Intraseasonal predictability ; Madden–Julian oscillation ; Circumglobal wave train
  • 刊名:Climate Dynamics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:46
  • 期:3-4
  • 页码:693-709
  • 全文大小:3,155 KB
  • 参考文献:Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332(6026):220–224. doi:10.​1126/​science.​1201224 CrossRef
    Beniston M (2004) The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys Res Lett 31:L02202. doi:10.​1029/​2003GL018857 CrossRef
    Blackmon ML (1976) A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J Atmos Sci 33:1607–1623CrossRef
    Cassou C (2008) Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic oscillation. Nature 455(7212):523–527CrossRef
    Chapman D, Cane M, Lee DE, Henderson N, Chen C (2015) A vector autoregressive ENSO prediction model (in review)
    Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Change 2:491–496. doi:10.​1038/​nclimate1452
    Ding Q, Wang B (2005) Circumglobal teleconnection in the northern hemisphere summer. J Clim 18:3483–3505CrossRef
    Ding Q, Wang B (2007) Intraseasonal teleconnection between the summer Eurasian Wave Train and the Indian Monsoon. J Clim 20:3751–3767CrossRef
    Dole R, Hoerling M, Perlwitz J, Eischeid J, Pegion P, Zhang T, Quan X-W, Xu T, Murray D (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett 38:L06702. doi:10.​1029/​2010GL046582 CrossRef
    Feldstein SB (2000) The timescale, power spectra, and climate noise properties of teleconnection patterns. J Clim 13:4430–4440CrossRef
    Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462CrossRef
    Goddard L, Mason SJ, Zebiak SE, Ropelewski CF, Basher R, Cane MA (2001) Current approaches to seasonal-to-interannual climate predictions. Int J Climatol 21:1111–1152CrossRef
    Hoell A, Barlow M, Saini R (2013) Intraseasonal and seasonal-to-interannual Indian Ocean convection and hemispheric teleconnections. J Clim 26:8850–8867CrossRef
    Kravtsov S, Kondrashov D, Ghil M (2005) Multilevel regression modeling of nonlinear processes: derivation and applications to climatic variability. J Clim 18:4404–4424CrossRef
    Kravtsov S, Kondrashov D, Ghil M (2009) Empirical model reduction and the modeling hierarchy in climate dynamics. In: Palmer T, Williams P (eds) Stochastic Physics and Climate Modelling., invited chapterCambridge Univiversity Press, Cambridge
    Kumar A, Hoeling M, Ji M, Leetmaa A, Sardeshmukh P (1996) Assessing a GCM’s suitability for making seasonal predictions. J Climate 9:115–129CrossRef
    Lee DE, Chapman D, Henderson N, Chen C, Cane M (2015) Multilevel vector autoregressive prediction of sea surface temperature in the North tropical Atlantic Ocean and the Caribbean Sea (submitted)
    Leith CE (1971) Atmospheric predictability and two-dimensional turbulence. J Atmos Sci 28:145–161CrossRef
    Lin Hai, Brunet Gilbert, Derome Jacques (2009) An observed connection between the north atlantic oscillation and the Madden–Julian oscillation. J Climate 22:364–380CrossRef
    Ling J, Zhang C (2013) Diabatic heating profiles in recent global reanalyses. J Clim 26:3307–3325CrossRef
    Lorenz EN (1969) The predictability of a flow which possesses many scales of motion. Tellus 21:289–307CrossRef
    Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteor Soc Jpn 44:25–43
    Matthews AJ, Hoskins BJ, Masutani M (2004) The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Q J R Meteorol Soc 130:1991–2011CrossRef
    Newman M, Sardeshmukh PD, Winkler CR, Whitaker JS (2003) A study of subseasonal predictability. Mon Weather Rev 131:1715–1732CrossRef
    Pegion K, Sardeshmukh PD (2011) Prospects for improving subseasonal predictions. Mon Weather Rev 139:3648–3666CrossRef
    Penland C, Ghil M (1993) Forecasting Northern Hemisphere 700-mb geopotential height anomalies using empirical normal modes. Mon Weather Rev 121:2355–2372CrossRef
    Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648CrossRef
    Saeed S, Mueller WA, Hagemann S, Jacob D (2011) Circumglobal wave train and the summer monsoon over northwestern India and Pakistan: the explicit role of the surface heat low. Clim Dyn 37:1045–1060CrossRef
    Seo KH, Son SW (2012) The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J Atmos Sci 69:79–96CrossRef
    Shukla J (1998) Predictability in the midst of chaos: a scientific basis for climate forecasting. Science 282. doi:10.​1126/​science.​282.​5389.​728
    Shukla J, Marx L, Paolino D, Straus D, Anderson J, Ploshay J, Baumhefner D, Tribbia J, Brankovic C, Palmer T, Chang Y, Schubert S, Suarez M, Kalnay E (2000) Dynamical seasonal prediction. Bull Am Meteorol Soc 81:2593–2606CrossRef
    Smith DM, Scaife AA, Kirtman BP (2012) What is the current state of scientific knowledge with regard to seasonal to decadal forecasting. Environ Res Lett 7:015602. doi:10.​1088/​1748-9326/​7/​1/​015602 CrossRef
    Son SW, Lee S, Feldstein SB, Ten Hoeve JE (2008) Time scale and feedback of zonal-mean-flow variability. J Atmos Sci 65:935–952CrossRef
    Teng H, Branstator G, Wang H, Meehl GA, Washington WM (2013) Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat Geosci 6:1056–1061CrossRef
    Tribbia JJ, Baumhefner DP (2004) Scale interactions and atmospheric predictability: an updated perspective. Mon Weather Rev 132:703–713CrossRef
    Tsonis AA, Roebber PJ, Elsner JB (1999) Long-range correlations in the extratropical atmospheric circulation: origins and implications. J Climate 12:1534–1541CrossRef
    Vyushin DI, Kushner PJ (2009) Power-law and long-memory characteristics of the atmospheric general circulation. J Clim 22:2890–2904CrossRef
    Wilks DS (1995) Statistical methods in the atmospheric sciences: an introduction. Academic Press, San Diego
    Winkler CR, Newman M, Sardeshmukh PD (2001) A linear model of wintertime low-frequency variability. Part I: formulation and forecast skill. J Clim 14:4474–4494CrossRef
    Zhang C (2005) Madden–Julian oscillation. Rev Geophys 43(2):RG2003. doi:10.​1029/​2004RG000158
    Zhou S, Miller AJ (2005) The Interaction of the Madden–Julian oscillation and the arctic oscillation. J Clim 18:143–159CrossRef
  • 作者单位:Lei Wang (1)
    Mingfang Ting (1)
    David Chapman (1)
    Dong Eun Lee (1)
    Naomi Henderson (1)
    Xiaojun Yuan (1)

    1. Lamont-Doherty Earth Observatory, Columbia University, 61 Rt. 9W, Palisades, NY, 10964, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0894
文摘
A data-driven, high-order vector auto-regressive (VAR) model is evaluated for predicting the Northern Hemisphere summer time (May through September) low frequency (>10 days or so) variability. The VAR model is suitable for linear stationary time series, similar to the commonly used linear inverse model (LIM), with additional temporal information incorporated to improve forecast skill. The intraseasonal forecast skill of the 250/750 hPa streamfunction is investigated using observational data since 1979, which shows significant improvements in high-order VAR models than the first-order model LIM. Furthermore, the tropical diabatic heating is found to significantly improve the forecast skill of the atmospheric low frequency circulation when included in the VAR model. The forecast skill of 250 hPa streamfunction at Arabian Peninsula is particularly enhanced for up to 5 weeks lead-time through circumglobal wave propagation associated with the persistent tropical eastern Pacific and equatorial Atlantic heating anomalies and the intraseasonal evolution of the tropical Indian Ocean and western Pacific heating anomalies. Keywords Low frequency variability Intraseasonal predictability Madden–Julian oscillation Circumglobal wave train

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700