Carbon nanofillers incorporated electrically conducting poly ε-caprolactone nanocomposite films and their biocompatibility studies using MG-63 cell line
详细信息    查看全文
  • 作者:J. Gopinathan ; Mamatha M. Pillai ; V. Elakkiya ; R. Selvakumar…
  • 关键词:Poly ε ; caprolactone ; Nanocomposites ; Carbon nanofiber ; Nanographite ; Exfoliated graphite
  • 刊名:Polymer Bulletin
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:73
  • 期:4
  • 页码:1037-1053
  • 全文大小:2,179 KB
  • 参考文献:1.Lovdal A, Vange J, Nielsen LF, Almdal K (2014) Mechanical properties of electrospun PCL scaffold under in vitro and accelerated degradation conditions. Biomed Eng Appl Bas Commun 26:1450043CrossRef
    2.Yuan X, Arkonac DE, Chao PHG, Vunjak-Novakovic G (2014) Electrical stimulation enhances cell migration and integrative repair in the meniscus. Sci Rep 4:3674. doi:10.​1038/​srep03674
    3.Asiri AM, Marwani HM, Khan SB, Webster TJ (2014) Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites. Int J Nanomed 9:5533
    4.Mattioli-Belmonte M, Giavaresi G, Biagini G, Virgili L, Giacomini M, Fini M, Giantomassi F, Natali D, Torricelli P, Giardino R (2003) Tailoring biomaterial compatibility: in vivo tissue response versus in vitro cell behavior. Int J Artif Organs 26(12):1077–1085
    5.Shi G, Zhang Z, Rouabhia M (2008) The regulation of cell functions electrically using biodegradable polypyrrole-polylactide conductors. Biomaterials 29(28):3792–3798CrossRef
    6.Manandhar P, Calvert PD, Buck JR (2012) Elastomeric ionic hydrogel sensor for large strains. IEEE Sens J 12:2052–2061CrossRef
    7.Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwodiauer R (2014) A soft future: from robots and sensor skin to energy harvesters. Adv Mater 26:149–161CrossRef
    8.Keplinger C, Sun JY, Foo CC, Rothemund P, Whitesides GM, Suo Z (2013) Stretchable, transparent, ionic conductors. Science 41:984–987CrossRef
    9.Zhang X, Pint CL, Lee MH, Schubert BE, Jamshidi A, Takei K, Ko H, Gillies A, Bardhan R, Urban JJ, Wu M, Fearing R, Javey A (2011) Optically and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Lett 11:3239–3244CrossRef
    10.Wang E, Desai MS, Lee SW (2013) Light-controlled graphene-elastin composite hydrogel actuators. Nano Lett 13:2826–2830CrossRef
    11.Green RA, Lovell NH, Wallace GG, Poole-Warren LA (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29:3393–3399CrossRef
    12.Bhattacharyya A, Gopinathan J (2013) Studies on nanocomposite conducting coatings. J Coat. doi:10.​1155/​2013/​260638
    13.Hakkarainen M, Albertsson AC, Puglia D (2002) Heterogeneous biodegradation of polycaprolactone-low molecular weight products and surface changes. Macromol Chem Phys 203:1357–1363CrossRef
    14.Mecerreyes D, Stevens R, Nguyen C, Pomposo JA, Bengoetxea M, Grande H (2002) Synthesis and characterization of polypyrrole-graft-poly(ε-caprolactone) copolymers: new electrically conductive nanocomposites. Synth Met 126:173–178CrossRef
    15.Joshi M, Bhattacharyya A (2011) Nanotechnology—a new route to high-performance functional textiles. Text Prog 43:155–233CrossRef
    16.Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) A strategy for achieving low percolation and high electrical conductivity in melt-blended polycarbonate (PC)/multiwall carbon nanotube (MWCNT) nanocomposites: electrical and thermo-mechanical properties. Expr Polym Lett 7:505CrossRef
    17.Bhattacharyya A, Joshi M (2011) Development of polyurethane based conducting nanocomposite fibers via twin screw extrusion. Fiber Polym 12:734–740CrossRef
    18.Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67(7):1709–1718CrossRef
    19.Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1):2–22CrossRef
    20.Martin DJ, Osman AF, Andriani Y, Edwards GA (2012) Thermoplastic polyurethane (TPU)-based polymer nanocomposites. In: Gao F (ed) Advances in polymer nanocomposites: types and applications, 1st edn. Woodhead Publishing, Cambridge, pp 321–350
    21.Wang J, Sun P, Bao Y, Liu J, An L (2011) Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol In Vitro 25:242–250CrossRef
    22.Zhang Y, Xu Y, Li Z, Chen T, Lantz SM, Howard PC, Paule MG, Slikker W Jr, Watanabe F, Mustafa T, Biris AS, Ali SF (2011) Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC 12 cells. ACS Nano 5:7020–7033CrossRef
    23.Meng L, Jiang A, Chen R, Li CZ, Wang L, Qu Y, Wang P, Zhao Y, Chen C (2013) Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells. Toxicology 313:49–58CrossRef
    24.Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic (2014) Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 15(2):635–643CrossRef
    25.Chen X, Wei S, Yadav A, Patil R, Zhu J, Ximenes R, Sun L, Guo Z (2011) Poly(propylene)/carbon nanofiber nanocomposites: ex situ solvent-assisted preparation and analysis of electrical and electronic properties. Macromol Mater Eng 296:434–443CrossRef
    26.Bhattacharyya A, Joshi M (2012) Functional properties of microwave-absorbent nanocomposite coatings based on thermoplastic polyurethane-based and hybrid carbon-based nanofillers. Polym Adv Technol 23:975–983CrossRef
    27.Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350CrossRef
    28.Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR (2009) High-yield organic dispersions of unfunctionalized graphene. Nano Lett 9:3460–3462CrossRef
    29.Coleman JN (2013) Liquid exfoliation of defect-free Graphene. Acc Chem Res 46:14CrossRef
    30.Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef
    31.Li B, Zhong WH (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46:5595–5614CrossRef
    32.Bao Q, Zhang H, Yang J, Wang S, Tang DY, Jose R, Ramakrishna S, Lim CT, Loh KP (2010) Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791CrossRef
    33.Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 173:75–88CrossRef
    34.Price RL, Ellison K, Haberstroh KM (2004) Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J Biomed Mater Res 70A:129–138CrossRef
    35.Elias KL, Price RL, Webster TJ (2002) Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials 23:3279–3287CrossRef
    36.Price RL, Haberstroh KM, Webster TJ (2003) Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina. Med Biol Eng Comput 41:372–375CrossRef
    37.Price RL, Waid MC, Haberstroh KM, Webster TJ (2003) Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 24:1877–1887CrossRef
    38.ESD STM 11.11 (2001) Surface resistance measurement of static dissipative planar materials
    39.Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 3, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
    40.Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro TJ (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic. J Biomed Mater Res A 24:721CrossRef
    41.Wang J, Fu W, Zhang D, Yu X, Li J (2010) Evaluation of novel alginate dialdehyde cross-linked chitosan/calcium polyphosphate composite scaffolds for meniscus tissue engineering. Carbohydr Polym 79:705–710CrossRef
    42.Wan C, Sarem M, Moztarzadeh F, Shastri VP, Mozafari M (2013) Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue. Mater Sci Eng C 33:4777–4785CrossRef
    43.Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670CrossRef
    44.Varela-Rizo H, Montes de Oca G, Rodriguez-Pastor I, Monti M, Terenzi A, Martin-Gullon I (2012) Analysis of the electrical and rheological behavior of different processed CNF/PMMA nanocomposites. Compos Sci Technol 72:218–224CrossRef
    45.Ghose S, Watson KA, Working DC, Connell JW, Smith JG, Sun YP (2008) Thermal conductivity of ethylene vinyl acetate copolymer/nanofiller blends. Compos Sci Technol 68:1843–1853CrossRef
    46.Dottori M, Armentano I, Fortunati E, Kenny JM (2010) Production and properties of solvent-cast poly (ε-caprolactone) composites with carbon nanostructures. J Appl Polym Sci 119:3544–3552CrossRef
    47.Jiang X, Sui X, Lu Y, Yan Y, Zhou C, Li L, Qiushi R, Chai X (2013) In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation. J Neuroeng Rehabil 10:48CrossRef
    48.Khang D, Kim SY, Liu-Snyder P, Palmore GTR, Durbin SM, Webster TJ (2007) Enhanced fibronectin adsorption on carbon nanotube/poly (carbonate) urethane: independent role of surface nano-roughness and associated surface energy. Biomaterials 28:4756–4768CrossRef
    49.Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ (2008) The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 29:970–983CrossRef
    50.Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ (2001) Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng 7:55–71CrossRef
    51.Tran PA, Zhang L, Webster TJ (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev 61:1097–1114CrossRef
  • 作者单位:J. Gopinathan (1)
    Mamatha M. Pillai (2)
    V. Elakkiya (2)
    R. Selvakumar (2)
    Amitava Bhattacharyya (1)

    1. Advanced Textile and Polymer Research Lab, PSG Institute of Advanced Studies, Coimbatore, 641004, India
    2. Tissue Engineering Lab, PSG Institute of Advanced Studies, Coimbatore, 641004, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
    Characterization and Evaluation Materials
    Soft Matter and Complex Fluids
    Physical Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-2449
文摘
Poly ε-caprolactone (PCL)-based nanocomposite films were prepared by solvent casting method with different electrically conducting carbon nanofillers like carbon nanofiber (CNF), nanographite and liquid exfoliated graphite. These nanocomposite films show remarkable increase in both surface and bulk electrical conductivity. Continuous network of nanofillers in polymer matrix was observed under high-resolution transmission electron microscopy (HRTEM). The spreading resistance images in AFM showed the presence of nanofillers on the nanocomposite films. These films reveal strong directional effect in electrical conductivity towards longitudinal direction than transverse. PCL film dispersed with 10 % (w/w) CNF showed an electrical conductivity of 19 S/m at longitudinal direction as compared to 1 S/m at transverse direction. This can be best explained with the arrangement of nanofillers along longitudinal direction during solution casting method which is evident from HRTEM images. The electrical conductivity of the nanocomposite films increased in the presence of phosphate buffer saline and simulated body fluid with time. MTT and nuclear staining experiments with osteoblast MG63 cells clearly demonstrated good biocompatibility of these materials. Among all the nanofillers, CNF looks most promising for biomedical applications of PCL-based conducting nanocomposites, as it shows high electrical conductivity and good cell proliferation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700