Glycome characterization of immunoglobulin G from buffalo (Bubalus bubalis) colostrum
详细信息    查看全文
  • 作者:L. S. Mamatha Bhanu ; M. Amano ; S.-I. Nishimura ; H. S. Aparna
  • 关键词:Bubalus bubalis ; Colostrum ; Glycoblotting ; Immunoglobulin G ; MALDI ; TOF MS
  • 刊名:Glycoconjugate Journal
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:32
  • 期:8
  • 页码:625-634
  • 全文大小:2,082 KB
  • 参考文献:1.Pramod, G., Gill, H.S.: Oligosaccharides and glycoconjugates in bovine milk and colostrum. Br. J. Nutr. 84, 69–74 (2000)
    2.Aurelia, P., Cristian, C., Camelia, R., Vioara, M., Gheorghe, M.: The study of the main parameters quality of buffalo milk. Afr. J. Microbiol. Res. 10, 201–206 (2009)
    3.Antonius, M.: In vivo antimicrobial and an-tiviral activity of components in bovine milk and colostrum involved in non-specific defence. Br. J. Nutr. 84, 127–134 (2000)
    4.Uruakpa, O., Ismond, M.A.H., Akobundu, E.N.T.: Colostrum and its benefits: a review. Nutr. Res. 22, 755–767 (2002)CrossRef
    5.Martinez-Ferez, A., Rudloff, S., Guadix, A., Cordula, A.H., Pohlentz, G., Boza, J.B., Guadix, E.M., Kunz, C.: Goat’s milk as a natural source of lactose-derived oligosaccharides: isolation by membrane technology. Int. Dairy J. 16, 173–181 (2006)CrossRef
    6.Colarow, L., Turini, M., Tencherg, S., Berger, A.: Characterization and biological activity of gangliosides in buffalo milk. Biochim. Biophys. Acta 1631, 94–106 (2003)CrossRef PubMed
    7.Bulter, J.E.: Bovine immunoglobulins: an augmented review. Vet. Immunol. Immunopath. 4, 43–152 (1983)CrossRef
    8.Dang, A.K., Kapila, S., Purohit, M., Singh, C.: Changes in colostrum of Murrah buffaloes after calving. Trop. Anim. Health. Pro. 41, 1213–1217 (2008)CrossRef
    9.Kulkarni, B.A.: Immunoglobulins of the Indian buffalo. V. Changes in colostrum milk and neonatal calf serum immunoglobulins in early lactation. Indian J. Biochem. Biophys. 18, 28–31 (1981)PubMed
    10.Goodman, W.: Immunoglobulin structure and function. In: Stites, D.P., et al. (eds.) Basic and clinical Immunology, p. 27. Lang. Med. Pub., Los Altos, CA (1987)
    11.Arnold, N., Wormald, M.R., Sim, R.B., Rudd, P.M., Dwek, R.A.: The impact of glycosylation on the biological function and structure of human immunoglobulins. Ann. Rev. Immunol. 25, 21–50 (2007)CrossRef
    12.Zeitlin, L., Pettitt, J.J., Scully, C.C., Bohorova, N.N., Do, D.K., Pauly, M.M., Hiatt, A.A., Ngo, L.L., Steinkellner, H.H., Whaley, K.J.K., Olingerb, G.G.: Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc. Natl. Acad. Sci. 108, 20690–20694 (2011)PubMedCentral CrossRef PubMed
    13.Kai-Ting, S., Robert, M.A.: Antibody glycosylation and Inflammation. Antibodies 2, 392–414 (2013)CrossRef
    14.Nimmerjahn, F., Ravetch, J.V.: Divergent Immunoglobulin G subclass activity through selective Fc receptor binding. Sci. 310, 1510–1512 (2005)CrossRef
    15.Junttila, T.T., Parsons, K., Olsson, C., Lu, Y., Xin, Y., Theriault, J., Crocker, L., Pabonan, O., Baginski, T., Meng, G., Totpal, K., Kelley, R.F., Sliwkowski, M.X.: Superior in vivo efficacy of afucosylated trastuzumab in the treatment of HER2-amplified. Breast Canc. Canc. Res. 70, 4481–4489 (2010)
    16.Kaneko, Y., Nimmerjahn, F., Ravetch, J.V.: Anti-inflammatory activity of Immunoglobulin G resulting from Fc sialylation. Sci. 313, 670–673 (2006)CrossRef
    17.Aparna, H.S., Salimath, P.V.: Purification of an antigenic glycopeptide from buffalo colostrum. J. Food Sci. Technol. 38, 450–452 (2001)
    18.Kanade, S.R., Rao, D.H., Hegde, R.N., Gowda, L.R.: The unique enzymatic function of field bean (Dolichos lablab) D-galactose specific lectin: a polyphenol oxidase. Glycoconj. J. 26, 535–545 (2009)CrossRef PubMed
    19.Rosenfeld, J., Capdevielle, Guillemot, C., Ferrara, P.: In-gel digestion for internal sequence analysis after one-or two-dimensional gel electrophoresis. Anal. Biochem. 203, 173–179 (1992)CrossRef PubMed
    20.Suckau, D., Resemann, A., Schuerenberg, M., Hufnagel, P., Franzen, J., Holle, A.: A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 376, 952–965 (2003)CrossRef PubMed
    21.Kita, Y., Muira, Y., Furukawa, J., Nakano, M., Shinohara, Y., Ohno, M., Takimoto, A., Nishimura, S.-I.: Quantitative glycomics of human whole serum glycoproteins based on the standardized protocol for liberating N-glycans. Mol. Cell. Proteomics 6, 1437–1445 (2007)CrossRef PubMed
    22.Furukawa, J., Shinohara, Y., Kuramoto, H., Miura, Y., Shimaoka, H., Kurogochi, M., Nakano, M., Nishimura, S.-I.: Comperhensive approach to structural and functional glycomics based on chemoselective glycoblotting and sequential tag conversion. Anal. Chem. 80, 1094–1101 (2008)CrossRef PubMed
    23.Rohit, A.C., Aparna, H.S.: Characterization of β-lactoglobulin from buffalo colostrum and its possible interaction erythrocyte lipocalin-interacting-membrane-receptor (LIMR). J. Biochem. 150, 279–288 (2011)CrossRef
    24.McKinney, M., Parkinson, A.: A simple, non-chromatographic procedure to purify immunoglobulins from serum and ascites fluid. J. Immunol. Methods 96, 271–278 (1987)CrossRef PubMed
    25.Premysl, K., Rodney, J.B., William, H.S.: Chromatographic purification of immunoglobulin G from bovine milk whey. J. Chromatograph. A 673, 45–53 (1994)CrossRef
    26.Didier, L., Alain, O.: Bovine immunoglobulin G, β-lactoglobulin, α-lactalbumin and serum albumin in colostrum and milk during the early postpartum period. J. Dairy Res. 66, 421–430 (1999)CrossRef
    27.Korhonen, H., Marnila, P., Gill, H.S.: Milk immunoglobulins and complement factors. Br. J. Nutr. 84, 75–80 (2000)
    28.Gapper, L.W., Copestake, D.E., Otter, D.E., Indyk, H.E.: Analysis of bovine immunoglobulin G in milk, colostrum and dietary supplements a review. Anal. Bioanal. Chem. 389, 93–109 (2007)CrossRef PubMed
    29.Elke, S., Leitner, B., Ryan, M.M., Elizabeth, H.D., Farhat, K., John, W., Evelina, A.: Evaluation of immunoglobulin purification methods and their impact on qualitative and yield of antigen-specific antibodies. Malarial J. 7, 129–138 (2008)CrossRef
    30.Menegatti, S., Hussain, M., Naik, A.D., Carbonell, R.G., Rao, B.M.: mRNA display selection and solid-phase synthesis of Fc-binding cyclic peptide affinity ligands. Biotechnol. Bioeng. 110, 857–870 (2013)CrossRef PubMed
    31.Tong, F., Lin, D.Q., Yuan, X.M., Yao, S.J.: Enhancing IgG purification from serum albumin containing feedstock with hydrophobic charge-induction chromatography. J. Chromatogr. A 1244, 116–122 (2012)CrossRef PubMed
    32.Ezan, E., Bitsch, F.: Critical comparison of MS and immunoassays for the bioanalysis of therapeutic antibodies. Bioanalysis 1, 1375–1388 (2009)CrossRef PubMed
    33.Wu, H., Chen, S., Shortreed, M.R., Kreitinger, G.M., Yuan, Y., Frey, B.L., Zhang, Y., Mirza, S., Cirillo, L.A., Olivier, M., Smith, L.M.: Sequence-specific capture of protein-DNA complexes for mass spectrometric protein identification. PLoS One. 6(10):e26217 (2011)
    34.Mesmin, C., Cholet, S., Blanchard, A., Chambon, Y., Azizi, M., Ezan, E.: Mass spectrometric quantification of AcSDKP-NH2 in human plasma and urine and comparison with an immunoassay. Rapid Commun. Mass Spectrom. 26, 163–172 (2012)CrossRef PubMed
    35.Nwosu, C.C., Aldredge, D.L., Lee, H., Lerno, L.A., Zivkovic, A.M., German, J.B., Lebrilla, C.B.: Comparison of the human and bovine milk N-glycome via high-performance microfluidic chip liquid chromatography and tandem mass spectrometry. J. Proteome Res. 11, 2912–2924 (2012)PubMedCentral CrossRef PubMed
    36.Nongluk, S., Sachiko, K., Hirokazu, Y., Hiroaki, H., Shin-ichi, N., Keita, Y., Ito, H., Hisashi, N.J., Koichi, K., Yasuo, S.: Bovine milk whey for preparation of natural N-glycans: structural and quantitative analysis. Open Glysosci. 5, 41–50 (2012)CrossRef
    37.Takimori, S., Shimaoka, H., Furukawa, J., Yamashita, T., Amano, M., Fujitani, N., Takegawa, Y., Hammarström, L.I., Kacskovics, Shinohara, Y., Nishimura, S.: Alteration of the N-glycome of bovine milk glycoproteins during early lactation. FEBS J. 278, 3769–3781 (2011)CrossRef PubMed
    38.Robert, A., Fredrik, W., Jeffrey, V.R.: Novel roles for the Fc glycan. Ann. N.Y. Acad. Sci. 1253, 170–180 (2012)CrossRef
    39.Hodoniczky, J., Zheng, Y.Z., James, D.C.: Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol. Prog. 21, 1644–1652 (2005)CrossRef PubMed
    40.Menon, S., Rosenberg, K., Graham, S.A., Ward, E.M., Taylor, M.E., Drickamer, K.: Binding-site geometry and flexibility in DC-SIGN demonstrated with surface force measurements. Proc. Natl. Acad. Sci. U. S. A. 106, 11524–11529 (2009)PubMedCentral CrossRef PubMed
    41.Sato, T., Takio, K., Kobata, A., Greenwalt, D.E., Furukawa, K.: Site-specific glycosylation of bovine butyrophilin. J. Biochem. 117, 147–157 (1995)PubMed
    42.Wei, Z., Nishimura, T., Yoshida, S.: Presence of a glycan at a potential N-glycosylation site, Asn-281, of Bovine Lactoferrin. J. Dairy Sci. 83, 683–689 (2000)CrossRef PubMed
    43.Urashima, T., Taufik, E., Fukuda, K., Asakuma, S.: Recent advances in studies on milk oligosaccharides of cows and other domestic farm animals. Biosci. Biotechnol. Biochem. 77, 455–466 (2013)CrossRef PubMed
  • 作者单位:L. S. Mamatha Bhanu (1)
    M. Amano (2)
    S.-I. Nishimura (2)
    H. S. Aparna (1)

    1. Department of Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, India
    2. Faculty of Advanced Life Sciences, Hokkaido University, Sapporo, 001-0021, Japan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Pathology
  • 出版者:Springer Netherlands
  • ISSN:1573-4986
文摘
Immunoglobulin G (IgG) is a major glycoprotein in ruminant colostrum. First day buffalo colostrum protein was purified on Sephadex G-100 and its mass was determined by MALDI-TOF as 147.848 KDa. The PMF data of protein subunits revealed its homology to IgG, which was supported by the identification of peptide sequences LLIYGATSR and VYNEYLPAPIVR corresponding to light and heavy chains of IgG by CID MS/MS analysis. The N-glycan microheterogeneity was established based on chemoselective glycoblotting technique with the identification of high mannose, neutral complex/hybrid and sialylated complex/hybrid glycans. A complete structural assignment of 54 N-linked oligosaccharides were identified and the ratio of sialyl oligosaccharides was found to be higher compared to neutral saccharides. The fucosylation observed in more than 20 oligosaccharides, high mannose and trisialyl oligosaccharides were present in diminutive amount. The high non-fucosyl and sialyl oligosaccharides in buffalo colostrum IgG provide ample scope for its utilization in targeted therapies to elicit effective ADCC and anti-inflammatory responses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700