Linear and weakly nonlinear magnetoconvection in a porous medium with a thermal nonequilibrium model
详细信息    查看全文
文摘
Two-dimensional magnetoconvection in a layer of Brinkman porous medium with local thermal nonequilibrium (LTNE) model is investigated by performing both linear and weakly nonlinear stability analyses. Condition for the occurrence of stationary and oscillatory convection is obtained in the case of linear stability analysis. It is observed that the presence of magnetic field is to introduce oscillatory convection once the Chandrasekhar number exceeds a threshold value if the ratio of the magnetic diffusivity to the thermal diffusivity is sufficiently small. Besides, asymptotic solutions for both small and large values of the inter-phase heat transfer coefficient are presented for the steady case. A weakly nonlinear stability analysis is performed by constructing a system of nonlinear autonomous ordinary differential equations. It is observed that subcritical steady convection is possible for certain choices of physical parameters. Heat transport is calculated in terms of Nusselt number. Increasing the value of Chandrasekhar number, inter-phase heat transfer coefficient and the inverse Darcy number is to decrease the heat transport, while increasing the ratio of the magnetic diffusivity to the thermal diffusivity and the porosity modified conductivity ratio shows an opposite kind of behavior on the heat transfer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700