In planta transformation of sorghum (Sorghum bicolor (L.) Moench) using TPS1 gene for enhancing tolerance to abiotic stresses
详细信息    查看全文
  • 作者:VARALAXMI YELLISETTY ; L. A. REDDY ; MAHESWARI MANDAPAKA
  • 关键词:apical meristem ; sorghum ; in planta transformation ; TPS1 gene
  • 刊名:Journal of Genetics
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:94
  • 期:3
  • 页码:425-434
  • 全文大小:5,617 KB
  • 参考文献:Birch R. G. 1997 Plant transformation: problems and strategies for practical application. Ann. Rev. Plant Phys. Plant Mol. Biol. 48, 297-26.CrossRef
    Cabib E. and Leloir L. 1958 The biosynthesis of trehalose phosphate. J. Biochem. 231, 259-75.
    Casas A. M., Kononowicz A. K., Haan T. G., Zhang L., Tomes D. T., Bressan R. A. and Hasegawa P. M. 1997 Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell Dev. Biol. Plant 33, 92-00.
    Chomczynski P. 1993 A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15, 532-37.PubMed
    Cortina C. and Culianez-Macia F. A. 2005 Tomato abiotic stress tolerance enhanced by trehalose biosynthesis. Plant Sci. 169, 75-2.CrossRef
    Delorge I., Janiak M., Carpentier S. and Dijck P. V. 2014 Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. Front. Plant Sci. 5, 1-.CrossRef
    Doyle J. J. and Doyle J. L. 1990 Isolation of plant DNA from fresh tissue. Focus 12, 13-5.
    Elkonin L. A., Ravin N. V., Leshko E. V., Volokhina I. V., Chumakov M. I. and Skryabin K. G. 2009 Inplanta agrobacterial transformation of sorghum plants. Biotekhnologiya 1, 23-0.
    Garg A. K., Kim J. K., Ranwala A. P., Choi Y. D., Kochian L. V. and Wu R. J. 2002 Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Natl. Acad. Sci. USA 99, 15898-5903.PubMedCentral CrossRef PubMed
    Girijashankar V. and Swathisree V. 2009 Genetic transformation of Sorghum bicolor. Physiol. Mol. Biol. Plants 15, 1-5.CrossRef
    Grootboom A. W., Mkhonza N. L., O’Kennedy M. M., Chakauya E., Kunert K. and Chikwamba R. K. 2010 Biolistic mediated sorghum (Sorghum bicolor (L.) Moench) transformation via mannose and bialaphos based selection systems. Int. J. Bot. 6, 89-4.CrossRef
    Gurel S., Gurel E., Kaur R., Wong J., Meng L., Tan H. -Q. and Lemaux P. G. 2009 Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep. 28, 429-44.CrossRef PubMed
    Holmstrom K. O., Maentyla E. E., Welin B., Mandal A., Palva E. T., Tunnela O. E. and Londesborough J. 1996 Drought tolerance in tobacco. Nature 379, 683-84.
    Howe A., Sato S., Dweikat I., Fromm M. and Clemente T. 2006 Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep. 25, 784-91.CrossRef PubMed
    Jaganath B., Subramanyam K., Subramanian M., Karthik S., Elayaraja D., Uday Kumar R. et al. 2014 An efficient inplanta transformation of Jatropha curcus (L.) and multiplication of transformed plants through in vivo grafting. Protoplasma 251, 591-01.CrossRef PubMed
    Jefferson R. A., Kavnagh T. A. and Bevan M. 1987 GUS fusions: ?-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3907-910.
    Keshamma E., Rohini S., Rao K. S., Madhusudan B. and Udaya kumar M. 2008 Tissue culture-independent inplanta transformation strategy: an Agrobacterium tumifaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.) J. Cotton Sci. 12, 264-72.
    Kojima M., Arai Y., Iwase N., Shiratori K., Shioiri H. and Nozue M. 2000 Development of a simple and efficient method for transformation of buckwheat plants (Fugopyrum esculentum) using Agrobacterium tumefaciens. Biosci. Biotechnol. Biochem. 64, 845-47.CrossRef PubMed
    Kojima M., Shioiri H., Nogawa M., Nozue M., Matsumoto D., Wada A. et al. 2004 Inplanta transformation of kenaf plants (Hibiscus cannabinus var. aokawa no.3) by Agrobacterium tumefaciens. J. Biosci. Bioeng. 98, 136-39.CrossRef PubMed
    Liu G. and Godwin I. D. 2012 Highly efficient sorghum transformation. Plant Cell Rep. 31, 32-7.
    Maheswari M., Varalaxmi Y., Vijayalakshmi A., Yadav S. K., Sharmila P., Venkateswarlu B. et al. 2010 Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biol. Plant 54, 647-52.CrossRef
    Maqbool S. B., Devi P. and Sticklen M. B. 2001 Biotechnology: Advances for the genetic improvement of sorghum (Sorghum bicolor (L.) Moench). In Vitro Cell Dev. Biol. Plant 37, 504-515.CrossRef
    Penna S. 2003 Building stress tolerance through over-producing trehalose in transgenic plants. Trends Plant Sci. 8, 355-357.CrossRef PubMed
    Ping L. X., Nogawa M., Nozue M., Makita M., Takeda M., Bao L. and Kojima M. 2003 Inplanta transformation of mulberry trees (Morus alba L.) by Agrobacterium tumefaciens. J. Insect Biotechnol. Sericol. 72, 177-84.
    Romero C., Belles J. M., Vaya J. L., Serrano R. and Culianez-Macia F. A. 1997 Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants, pleiotropic phenotypes include drought tolerance. Planta 201, 293-97.CrossRef PubMed
    Rontein D., Basset G. and Hanson A. D. 2002 Metabolic engineering of osmopro
  • 作者单位:VARALAXMI YELLISETTY (1)
    L. A. REDDY (2)
    MAHESWARI MANDAPAKA (1)

    1. Division of Crop Sciences, Central Research Institute for Dryland Agriculture, Santhoshnagar, Hyderabad, 500 059, India
    2. Department of Genetics, Osmania University, Durgabhai Deshmukh Colony, Hyderabad, 500 007, India
  • 刊物主题:Life Sciences, general; Microbial Genetics and Genomics; Plant Genetics & Genomics; Animal Genetics and Genomics; Evolutionary Biology;
  • 出版者:Springer India
  • ISSN:0973-7731
文摘
An in planta transformation protocol for sorghum (Sorghum bicolor (L.) Moench) using shoot apical meristem of germinating seedlings is reported in this study. Agrobacterium tumefaciens strain, LBA4404 with pCAMBIA1303 vector and construct pCAMBIA1303TPS1 were individually used for transformation. Since, the transgene is integrated into the cells of already differentiated tissues, the T0 plants were chimeric and stable integration was observed in T1 generation. ?-Glucuronidase (GUS) expression in the seedlings and spikelets of emerging cob was the first indication of transformability in T0 generation which was further confirmed by PCR analysis using hpt and TPS1 gene-specific primers. Screening on 25 mg/L hygromycin combined with PCR analysis was used for selection of transformants in the T1 generation. Transformation efficiencies ranged between 34-8% and 26-4% using pCAMBIA1303 vector and construct pCAMBIA1303TPS1, respectively. Molecular characterization of the T2 transgenics using PCR, RT-PCR and Southern blot analyses further revealed the integration, expression and inheritance of the transgene. These results indicate the feasibility of the method to generate transgenics with pCAMBIA1303 vector and construct pCAMBIA1303TPS1. The abiotic stress tolerance of TPS1 transgenics developed in the present study was evident by the ability of the transformants to tolerate 200 mM NaCl as well as higher root growth and biomass. Keywords apical meristem sorghum in planta transformation TPS1 gene

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700