Endogenous retrovirus-K promoter: a landing strip for inflammatory transcription factors?
详细信息    查看全文
  • 作者:Mamneet Manghera (1)
    Renée N Douville (1) (2)
  • 关键词:Endogenous retrovirus (ERV) ; Long terminal repeat (LTR) ; Transcription factor ; Inflammation ; Promoter ; Interferon ; stimulated response element (ISRE) ; Nuclear factor κB (NF ; κB) ; Human Immunodeficiency Virus (HIV).
  • 刊名:Retrovirology
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:10
  • 期:1
  • 全文大小:760KB
  • 参考文献:1. Ryan F: / Virolution: the most important evolutionary book since Dawkins-Selfish gene. London: Collins; 2009.
    2. Blikstad V, Benachenhou F, Sperber GO, Blomberg J: Evolution of human endogenous retroviral sequences: a conceptual account. / Cell Mol Life Sci 2008, 65:3348-365. CrossRef
    3. Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR, Yang M, Burgess SM, Brachmann RK, Haussler D: Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. / Proc Natl Acad Sci U S A 2007, 104:18613-8618. CrossRef
    4. Dupressoir A, Lavialle C, Heidmann T: From ancestral infectious retroviruses to bona fide cellular genes: Role of the captured syncytins in placentation. / Placenta 2012, 33:663-71. CrossRef
    5. Sugimoto J, Schust DJ: Review: human endogenous retroviruses and the placenta. / Reprod Sci 2009, 16:1023-033. CrossRef
    6. Morgan D, Brodsky I: Human endogenous retrovirus (HERV-K) particles in megakaryocytes cultured from essential thrombocythemia peripheral blood stem cells. / Exp Hematol 2004, 32:520-25. CrossRef
    7. Contreras-Galindo R, Kaplan MH, Leissner P, Verjat T, Ferlenghi I, Bagnoli F, Giusti F, Dosik MH, Hayes DF, Gitlin SD, Markovitz DM: Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. / J Virol 2008, 82:9329-336. CrossRef
    8. Solyom S, Kazazian HH Jr: Mobile elements in the human genome: implications for disease. / Genome Med 2012, 4:12. CrossRef
    9. Christensen T: HERVs in neuropathogenesis. / J Neuroimmune Pharmacol 2010, 5:326-35. CrossRef
    10. Krone B, Grange JM: Melanoma, Darwinian medicine and the inner world. / J Cancer Res Clin Oncol 2010, 136:1787-794. CrossRef
    11. Freimanis G, Hooley P, Ejtehadi HD, Ali HA, Veitch A, Rylance PB, Alawi A, Axford J, Nevill A, Murray PG, Nelson PN: A role for human endogenous retrovirus-K (HML-2) in rheumatoid arthritis: investigating mechanisms of pathogenesis. / Clin Exp Immunol 2010, 160:340-47. CrossRef
    12. Krzysztalowska-Wawrzyniak M, Ostanek M, Clark J, Binczak-Kuleta A, Ostanek L, Kaczmarczyk M, Loniewska B, Wyrwicz LS, Brzosko M, Ciechanowicz A: The distribution of human endogenous retrovirus K-113 in health and autoimmune diseases in Poland. / Rheumatology (Oxford) 2011, 50:1310-314. CrossRef
    13. Frank O, Giehl M, Zheng C, Hehlmann R, Leib-Mosch C, Seifarth W: Human endogenous retrovirus expression profiles in samples from brains of patients with schizophrenia and bipolar disorders. / J Virol 2005, 79:10890-0901. CrossRef
    14. Douville R, Liu J, Rothstein J, Nath A: Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. / Ann Neurol 2011, 69:141-51. CrossRef
    15. Ruprecht K, Mayer J, Sauter M, Roemer K, Mueller-Lantzsch N: Endogenous retroviruses and cancer. / Cell Mol Life Sci 2008, 65:3366-382. CrossRef
    16. Contreras-Galindo R, Gonzalez M, Almodovar-Camacho S, Gonzalez-Ramirez S, Lorenzo E, Yamamura Y: A new Real-Time-RT-PCR for quantitation of human endogenous retroviruses type K (HERV-K) RNA load in plasma samples: increased HERV-K RNA titers in HIV-1 patients with HAART non-suppressive regimens. / J Virol Methods 2006, 136:51-7. CrossRef
    17. Gonzalez-Hernandez MJ, Swanson MD, Contreras-Galindo R, Cookinham S, King SR, Noel RJ Jr, Kaplan MH, Markovitz DM: Expression of Human Endogenous Retrovirus Type K (HML-2) Is Activated by the Tat Protein of HIV-1. / J Virol 2012, 86:7790-805. CrossRef
    18. Maksakova IA, Mager DL, Reiss D: Keeping active endogenous retroviral-like elements in check: the epigenetic perspective. / Cell Mol Life Sci 2008, 65:3329-347. CrossRef
    19. Landry S, Halin M, Lefort S, Audet B, Vaquero C, Mesnard JM, Barbeau B: Detection, characterization and regulation of antisense transcripts in HIV-1. / Retrovirology 2007, 4:71. CrossRef
    20. Barbeau B, Mesnard JM: Making sense out of antisense transcription in human T-cell lymphotropic viruses (HTLVs). / Viruses 2011, 3:456-68. CrossRef
    21. Kovalskaya E, Buzdin A, Gogvadze E, Vinogradova T, Sverdlov E: Functional human endogenous retroviral LTR transcription start sites are located between the R and U5 regions. / Virology 2006, 346:373-78. CrossRef
    22. Fuchs NV, Kraft M, Tondera C, Hanschmann KM, Lower J, Lower R: Expression of the human endogenous retrovirus (HERV) group HML-2/HERV-K does not depend on canonical promoter elements but is regulated by transcription factors Sp1 and Sp3. / J Virol 2011, 85:3436-448. CrossRef
    23. Katoh I, Mirova A, Kurata S, Murakami Y, Horikawa K, Nakakuki N, Sakai T, Hashimoto K, Maruyama A, Yonaga T: Activation of the long terminal repeat of human endogenous retrovirus K by melanoma-specific transcription factor MITF-M. / Neoplasia 2011, 13:1081-092.
    24. Subramanian RP, Wildschutte JH, Russo C, Coffin JM: Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. / Retrovirology 2011, 8:90. CrossRef
    25. Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM: PROMO: detection of known transcription regulatory elements using species-tailored searches. / Bioinformatics 2002, 18:333-34. CrossRef
    26. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C: Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. / Bioinformatics 2012, 28:1647-649. CrossRef
    27. Lavie L, Kitova M, Maldener E, Meese E, Mayer J: CpG methylation directly regulates transcriptional activity of the human endogenous retrovirus family HERV-K(HML-2). / J Virol 2005, 79:876. CrossRef
    28. Khodosevich K, Lebedev Y, Sverdlov ED: Large-scale determination of the methylation status of retrotransposons in different tissues using a methylation tags approach. / Nucleic Acids Res 2004, 32:e31. CrossRef
    29. Lee YN, Malim MH, Bieniasz PD: Hypermutation of an ancient human retrovirus by APOBEC3G. / J Virol 2008, 82:8762-770. CrossRef
    30. Koito A, Ikeda T: Intrinsic restriction activity by AID/APOBEC family of enzymes against the mobility of retroelements. / Mob Genet Elements 2011, 1:197-02. CrossRef
    31. Esnault C, Priet S, Ribet D, Heidmann O, Heidmann T: Restriction by APOBEC3 proteins of endogenous retroviruses with an extracellular life cycle: ex vivo effects and in vivo “traces-on the murine IAPE and human HERV-K elements. / Retrovirology 2008, 5:75. CrossRef
    32. Seifarth W, Frank O, Zeilfelder U, Spiess B, Greenwood AD, Hehlmann R, Leib-Mosch C: Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. / J Virol 2005, 79:341-52. CrossRef
    33. Flockerzi A, Ruggieri A, Frank O, Sauter M, Maldener E, Kopper B, Wullich B, Seifarth W, Muller-Lantzsch N, Leib-Mosch C: Expression patterns of trancrsibed human endogenous retrovirus HERV-K(HML-2) loci in human tissues and the need for a HERV Transcriptome Project. / BMC Genomics 2008, 9:354. CrossRef
    34. Nead MA, Baglia LA, Antinore MJ, Ludlow JW, McCance DJ: Rb binds c-Jun and activates transcription. / EMBO J 1998, 17:2342-352. CrossRef
    35. Imhof A, Schuierer M, Werner O, Moser M, Roth C, Bauer R, Buettner R: Transcriptional regulation of the AP-2alpha promoter by BTEB-1 and AP-2rep, a novel wt-1/egr-related zinc finger repressor. / Mol Cell Biol 1999, 19:194-04.
    36. Roche PJ, Hoare SA, Parker MG: A consensus DNA-binding site for the androgen receptor. / Mol Endoinol 1992, 6:2229-235. CrossRef
    37. Laoide BM, Foulkes NS, Schlotter F, Sassone-Corsi P: The functional versatility of CREM is determined by its modular structure. / EMBO J 1993, 12:1179-191.
    38. Vales LD, Friedl EM: Binding of C/EBP and RBP (CBF1) to overlapping sites regulates interleukin-6 gene expression. / J Biol Chem 2002, 277:42438-2446. CrossRef
    39. Wang SE, Wu FY, Yu Y, Hayward GS: CCAAT/enhancer-binding protein-alpha is induced during the early stages of Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic cycle reactivation and together with the KSHV replication and transcription activator (RTA) cooperatively stimulates the viral RTA, MTA, and PAN promoters. / J Virol 2003, 77:9590-612. CrossRef
    40. Deng QL, Ishii S, Sarai A: Binding site analysis of c-Myb: screening of potential binding sites by using the mutation matrix derived from systematic binding affinity measurements. / Nucleic Acids Res 1996, 24:766-74. CrossRef
    41. Providence KM, White LA, Tang J, Gonclaves J, Staiano-Coico L, Higgins PJ: Epithelial monolayer wounding stimulates binding of USF-1 to an E-box motif in the plasminogen activator inhibitor type 1 gene. / J Cell Sci 2002, 115:3767-777. CrossRef
    42. Halazonetis TD, Kandil AN: Determination of the c-MYC DNA-binding site. / Proc Natl Acad Sci U S A 1991, 88:6162-166. CrossRef
    43. Maier H, Hagman J: Roles of EBF and Pax-5 in B lineage commitment and development. / Semin Immunol 2002, 14:415-22. CrossRef
    44. Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M, Chiu KP, Lipovich L, Barnett DH, Stossi F: Whole-genome cartography of estrogen receptor alpha binding sites. / PLoS Genet 2007, 3:e87. CrossRef
    45. de Nigris F, Mega T, Berger N, Barone MV, Santoro M, Viglietto G, Verde P, Fusco A: Induction of ETS-1 and ETS-2 transcription factors is required for thyroid cell transformation. / Cancer Res 2001, 61:2267-275.
    46. Wang L, Wang X, Adamo ML: Two putative GATA motifs in the proximal exon 1 promoter of the rat insulin-like growth factor I gene regulate basal promoter activity. / Endoinology 2000, 141:1118-126. CrossRef
    47. Adler AJ, Danielsen M, Robins DM: Androgen-specific gene activation via a consensus glucocorticoid response element is determined by interaction with nonreceptor factors. / Proc Natl Acad Sci U S A 1992, 89:11660-1663. CrossRef
    48. Li Z, Perez-Casellas LA, Savic A, Song C, Dovat S: Ikaros isoforms: The saga continues. / World J Biol Chem 2011, 2:140-45. CrossRef
    49. Rosenbauer F, Waring JF, Foerster J, Wietstruk M, Philipp D, Horak I: Interferon consensus sequence binding protein and interferon regulatory factor-4/Pip form a complex that represses the expression of the interferon-stimulated gene-15 in macrophages. / Blood 1999, 94:4274-281.
    50. Arany I, Grattendick KJ, Whitehead WE, Ember IA, Tyring SK: A functional interferon regulatory factor-1 (IRF-1)-binding site in the upstream regulatory region (URR) of human papillomavirus type 16. / Virology 2003, 310:280-86. CrossRef
    51. Jin ZX, Kishi H, Wei XC, Matsuda T, Saito S, Muraguchi A: Lymphoid enhancer-binding factor-1 binds and activates the recombination-activating gene-2 promoter together with c-Myb and Pax-5 in immature B cells. / J Immunol 2002, 169:3783-792.
    52. Andres V, Cervera M, Mahdavi V: Determination of the consensus binding site for MEF2 expressed in muscle and brain reveals tissue-specific sequence constraints. / J Biol Chem 1995, 270:23246-3249. CrossRef
    53. Song J, Ugai H, Ogawa K, Wang Y, Sarai A, Obata Y, Kanazawa I, Sun K, Itakura K, Yokoyama KK: Two consecutive zinc fingers in Sp1 and in MAZ are essential for interactions with cis-elements. / J Biol Chem 2001, 276:30429-0434. CrossRef
    54. Handen JS, Rosenberg HF: Intronic enhancer activity of the eosinophil-derived neurotoxin (RNS2) and eosinophil cationic protein (RNS3) genes is mediated by an NFAT-1 consensus binding sequence. / J Biol Chem 1997, 272:1665-669. CrossRef
    55. Mukhopadhyay SS, Wyszomierski SL, Gronostajski RM, Rosen JM: Differential interactions of specific nuclear factor I isoforms with the glucocorticoid receptor and STAT5 in the cooperative regulation of WAP gene transcription. / Mol Cell Biol 2001, 21:6859-869. CrossRef
    56. Wong D, Teixeira A, Oikonomopoulos S, Humburg P, Lone IN, Saliba D, Siggers T, Bulyk M, Angelov D, Dimitrov S: Extensive characterization of NF-kappaB binding uncovers non-canonical motifs and advances the interpretation of genetic functional traits. / Genome Biol 2011, 12:R70. CrossRef
    57. Ferraris L, Stewart AP, Kang J, DeSimone AM, Gemberling M, Tantin D, Fairbrother WG: Combinatorial binding of transcription factors in the pluripotency control regions of the genome. / Genome Res 2011, 21:1055-064. CrossRef
    58. Yin P, Roqueiro D, Huang L, Owen JK, Xie A, Navarro A, Monsivais D, Coon JS, Kim JJ, Dai Y, Bulun SE: Genome-wide progesterone receptor binding: cell type-specific and shared mechanisms in T47D breast cancer cells and primary leiomyoma cells. / PLoS One 2012, 7:29021. CrossRef
    59. Cai BH, Chen JY, Lu MH, Chang LT, Lin HC, Chang YM, Chao CF: Functional four-base A/T gap core sequence CATTAG of P53 response elements specifically bound tetrameric P53 differently than two-base A/T gap core sequence CATG bound both dimeric and tetrameric P53. / Nucleic Acids Res 2009, 37:1984-990. CrossRef
    60. Carroll KD, Bu W, Palmeri D, Spadavecchia S, Lynch SJ, Marras SA, Tyagi S, Lukac DM: Kaposi’s Sarcoma-associated herpesvirus lytic switch protein stimulates DNA binding of RBP-Jk/CSL to activate the Notch pathway. / J Virol 2006, 80:9697-709. CrossRef
    61. Tchenio T, Casella JF, Heidmann T: Members of the SRY family regulate the human LINE retrotransposons. / Nucleic Acids Res 2000, 28:411-15. CrossRef
    62. Soldaini E, John S, Moro S, Bollenbacher J, Schindler U, Leonard WJ: DNA binding site selection of dimeric and tetrameric Stat5 proteins reveals a large repertoire of divergent tetrameric Stat5a binding sites. / Mol Cell Biol 2000, 20:389-01. CrossRef
    63. Hoopes BC, LeBlanc JF, Hawley DK: Kinetic analysis of yeast TFIID-TATA box complex formation suggests a multi-step pathway. / J Biol Chem 1992, 267:11539-1547.
    64. Hatzis P, van der Flier LG, van Driel MA, Guryev V, Nielsen F, Denissov S, Nijman IJ, Koster J, Santo EE, Welboren W: Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells. / Mol Cell Biol 2008, 28:2732-744. CrossRef
    65. Bayarsaihan D, Makeyev AV, Enkhmandakh B: Epigenetic modulation by TFII-I during embryonic stem cell differentiation. / J Cell Biochem 2012.
    66. Nishikawa J, Kitaura M, Matsumoto M, Imagawa M, Nishihara T: Difference and similarity of DNA sequence recognized by VDR homodimer and VDR/RXR heterodimer. / Nucleic Acids Res 1994, 22:2902-907. CrossRef
    67. Yamamoto K, Yoshida H, Kokame K, Kaufman RJ, Mori K: Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE. / UPRE and ERSE-II. J Biochem 2004, 136:343-50. CrossRef
    68. Kim JD, Yu S, Kim J: YY1 is autoregulated through its own DNA-binding sites. / BMC Mol Biol 2009, 10:85. CrossRef
    69. Sui W, Lin H, Chen J, Ou M, Dai Y: Comprehensive analysis of transcription factor expression patterns in peripheral blood mononuclear cell of systemic lupus erythematosus. / Int J Rheum Dis 2012, 15:212-19. CrossRef
    70. Ryu H, Lee J, Zaman K, Kubilis J, Ferrante RJ, Ross BD, Neve R, Ratan RR: Sp1 and Sp3 are oxidative stress-inducible, antideath transcription factors in cortical neurons. / J Neurosci 2003, 23:3597-606.
    71. Sleiman SF, Langley BC, Basso M: Mithramycin is a gene-selective Sp1 inhibitor that identifies a biological intersection between cancer and neurodegeneration. / J Neurosci 2011, 31:6858-870. CrossRef
    72. Ray A, Schatten H, Ray BK: Activation of Sp1 and its functional co-operation with serum amyloid A-activating sequence binding factor in synoviocyte cells trigger synergistic action of interleukin-1 and interleukin-6 in serum amyloid A gene expression. / J Biol Chem 1999, 274:4300-308. CrossRef
    73. Zaravinos A, Spandidos DA: Yin yang 1 expression in human tumors. / Cell Cycle 2010, 9:512-22. CrossRef
    74. Knossl M, Lower R, Lower J: Expression of the human endogenous retrovirus HTDV/HERV-K is enhanced by cellular transcription factor YY1. / J Virol 1999, 73:1254-261.
    75. Castellano G, Torrisi E, Ligresti G: The involvement of the transcription factor Yin Yang 1 in cancer development and progression. / Cell Cycle 2009, 8:1367-372. CrossRef
    76. He Y, Casaccia-Bonnefil P: The Yin and Yang of YY1 in the nervous system. / J Neurochem 2008, 106:1493-502. CrossRef
    77. Jiang YM, Yamamoto M, Kobayashi Y, Yoshihara T, Liang Y, Terao S, Takeuchi H, Ishigaki S, Katsuno M, Adachi H: Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. / Ann Neurol 2005, 57:236-51. CrossRef
    78. Bonetti B, Stegagno C, Cannella B, Rizzuto N, Moretto G, Raine CS: Activation of NF-kappaB and c-jun transcription factors in multiple sclerosis lesions. / Implications for oligodendrocyte pathology. Am J Pathol 1999, 155:1433-438.
    79. Sgarbanti M, Remoli AL, Marsili G: IRF-1 is required for full NF-kB transcriptional activity at the human immunodeficiency virus type 1 long terminal repeat enhancer. / J Virol 2008, 82:3632-641. CrossRef
    80. Pizzi M, Spano P: Distinct roles of diverse nuclear factor-kappa B complexes in neuropathological mechanisms. / Eur J Pharmacol 2006, 545:22-8. CrossRef
    81. Cho HJ, Son SM, Jin SM, Hong HS, Shin DH, Kim SJ, Huh K, Mook-Jung I: RAGE regulates BACE1 and Abeta generation via NFAT1 activation in Alzheimer’s disease animal model. / FASEB J 2009, 23:2639-649. CrossRef
    82. Loh C, Shaw KT, Carew J, Viola JP, Luo C, Perrino BA, Rao A: Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity. / J Biol Chem 1996, 271:10884-0891. CrossRef
    83. Ono M, Kawakami M, Ushikubo H: Stimulation of expression of the human endogenous retrovirus genome by female steroid hormones in human breast cancer cell line T47D. / J Virol 1987, 61:2059-062.
    84. Anderson E: The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. / Breast Cancer Res 2002, 4:197-01. CrossRef
    85. Inui A, Ogasawara H, Naito T, Sekigawa I, Takasaki Y, Hayashida Y, Takamori K, Ogawa H: Estrogen receptor expression by peripheral blood mononuclear cells of patients with systemic lupus erythematosus. / Clin Rheumatol 2007, 26:1675-678. CrossRef
    86. Hanke K, Chudak C, Kurth R, Bannert N: The Rec protein of HERV-K(HML-2) upregulates androgen receptor activity by binding to the human small glutamine-rich tetratricopeptide repeat protein (hSGT). / Int J Cancer 2013, 132:556-67. CrossRef
    87. Holdaft RW, Braun RE: Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. / Development 2004, 131:459-67. CrossRef
    88. Fischbeck KH, Lieberman A, Bailey CK, Abel A, Merry DE: Androgen receptor mutation in Kennedy’s disease. / Philos Trans R Soc Lond B Biol Sci 1999, 354:1075-078. CrossRef
    89. Garay JP, Karakas B, Abukhdeir AM, Cosgrove DP, Gustin JP, Higgins MJ, Konishi H, Konishi Y, Lauring J, Mohseni M: The growth response to androgen receptor signaling in ERalpha-negative human breast cells is dependent on p21 and mediated by MAPK activation. / Breast Cancer Res 2012, 14:R27. CrossRef
    90. Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, Warren A, Scott H, Madhu B, Sharma N: The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. / EMBO J 2011, 30:2719-733. CrossRef
    91. Li L, Davie JR: The role of Sp1 and Sp3 in normal and cancer cell biology. / Ann Anat 2010, 192:275-83. CrossRef
    92. Mao XR, Moerman-Herzog AM, Chen Y, Barger SW: Unique aspects of transcriptional regulation in neurons–nuances in NFκB and Sp1-related factors. / J Neuroinflammation 2009, 6:16. CrossRef
    93. Lavrosky Y, Chatterjee B, Clark RA, Roy AK: Role of redox-regulated transcription factors in inflammation, aging and age-related diseases. / Exp Gerontol 2000, 35:521-32. CrossRef
    94. Ikuta K, Waguri-Nagaya Y, Kikuchi K: The Sp1 transcription factor is essential for the expression of glyostatin/thymidine phosphorylase in rheumatoid fibroblast-like synoviocytes. / Arthritis Res Ther 2012, 14:R87. CrossRef
    95. Philipsen S, Suske G: A tale of three fingers: the family of mammalian Sp/XKLF transcription factors. / Nucleic Acids Res 1999, 27:2991-000. CrossRef
    96. Buscher K, Trefzer U, Hofmann M, Sterry W, Kurth R, Denner J: Expression of human endogenous retrovirus K in melanomas and melanoma cell lines. / Cancer Res 2005, 65:4172-180. CrossRef
    97. Serafino A, Balestrieri E, Pierimarchi P, Matteucci C, Moroni G, Oricchio E, Rasi G, Mastino A, Spadafora C, Garaci E, Vallebona PS: The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation. / Exp Cell Res 2009, 315:849-62. CrossRef
    98. Chan JK, Greene WC: Dynamic roles for NF-kappaB in HTLV-I and HIV-1 retroviral pathogenesis. / Immunol Rev 2012, 246:286-10. CrossRef
    99. Urnovitz HB, Murphy WH: Human endogenous retroviruses: Nature, occurrence, and clinical implications in human disease. / Clinical Microbiol Rev 1996, 9:72-9.
    100. Schwarzschild MA, Cole RL, Hyman SE: Glutamate, but not dopamine, stimulates stress-activated protein kinase and AP-1 mediated transcription in striatal neurons. / J Neuroscience 1997, 17:3455-466.
    101. Randall RE, Goodbourn S: Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. / J Gen Virol 2008, 89:1-7. CrossRef
    102. MacMicking JD: Interferon-inducible effector mechanisms in cell-autonomous immunity. / Nat Rev Immunol 2012, 12:367-82. CrossRef
    103. Lin R, Genin P, Mamane Y, Hiscott J: Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7. / Mol Cell Biol 2000, 20:6342-353. CrossRef
    104. Levy DE, Marie I, Smith E, Prakash A: Enhancement and diversification of IFN induction by IRF-7-mediated positive feedback. / J Interferon Cytokine Res 2002, 22:87-3. CrossRef
    105. Tai AK, Luka J, Ablashi D, Huber BT: HHV-6A infection induces expression of HERV-K18-encoded superantigen. / J Clin Virol 2009, 46:47-8. CrossRef
    106. Stauffer Y, Marguerat S, Meylan F, Ucla C, Sutkowski N, Huber B, Pelet T, Conrad B: Interferon-alpha-induced endogenous superantigen. a model linking environment and autoimmunity. / Immunity 2001, 15:591-01. CrossRef
    107. Sicat J, Sutkowski N, Huber BT: Expression of human endogenous retrovirus HERV-K18 superantigen is elevated in juvenile rheumatoid arthritis. / J Rheumatol 2005, 32:1821-831.
    108. Yarilina A, Park-Min KH, Antoniv T, Hu X, Ivashkiv LB: TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon-response genes. / Nat Immunol 2008, 9:378-87. CrossRef
    109. Harroch S, Revel M, Chebath J: Induction by interleukin-6 of interferon regulatory factor 1 (IRF-1) gene expression through the palindromic interferon response element pIRE and cell type-dependent control of IRF-1 binding to DNA. / EMBO J 1994, 13:1942-949.
    110. Wang-Johanning F, Frost AR, Johanning GL, Khazaeli MB, LoBuglio AF, Shaw DR, Strong TV: Expression of human endogenous retrovirus k envelope transcripts in human breast cancer. / Clin Cancer Res 2001, 7:1553-560.
    111. Wang-Johanning F, Frost AR, Jian B, Epp L, Lu DW, Johanning GL: Quantitation of HERV-K env gene expression and splicing in human breast cancer. / Oncogene 2003, 22:1528-535. CrossRef
    112. Golan M, Hizi A, Resau JH, Yaal-Hahoshen N, Reichman H, Keydar I, Tsarfaty I: Human endogenous retrovirus (HERV-K) reverse transcriptase as a breast cancer prognostic marker. / Neoplasia 2008, 10:521-33.
    113. Taruscio D, Mantovani A: Human endogenous retroviruses and environmental endocrine disrupters: a connection worth exploring? / Teratology 1998, 58:27-8. CrossRef
    114. Rubin BS: Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. / J Steroid Biochem Mol Biol 2011, 127:27-4. CrossRef
    115. Armstrong AP, Franklin AA, Uittenbogaard MN, Giebler HA, Nyborg JK: Pleitropic effect of the human T cell leukemia virus Tax protein on the DNA binding activity of eukaryotic transcription factors. / Proc Natl Acad Sci 1993, 90:7303-307. CrossRef
    116. Kwun HJ, Han HJ, Lee WJ, Kim HS, Jang KL: Transactivation of the human endogenous retrovirus K long terminal repeat by herpes simplex virus type 1 immediate early protein 0. / Virus Res 2002, 86:93-00. CrossRef
    117. Cedeno-Laurent F, Gomez-Flores M, Mendez N: New insights into HIV-1 primary skin disorders. / J Int AIDS Soc 2011, 14:5. CrossRef
    118. Contreras-Galindo R, Lopez P, Velez R, Yamamura Y: HIV-1 infection increases the expression of human endogenous retroviruses type K (HERV-K) in vitro. / AIDS Res Hum Retroviruses 2007, 23:116-22. CrossRef
    119. van der Kuyl AC: HIV infection and HERV expression: a review. / Retrovirology 2012, 9:6. CrossRef
    120. SenGupta D, Tandon R, Vieira RGS: Strong human endogenous retrovirus-specific T cell responses are associated with control of HIV-1 in chronic infection. / J Virol 2011, 85:6977-985. CrossRef
    121. Stopak K, de Noronha C, Yonemoto W, Green WC: HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability . / Mol Cell 2003, 12:591-01. CrossRef
    122. Jones RB, Garrison KE, Mujib S, Mihajlovic V, Aidarus N, Hunter DV, Martin E, John VM, Zhan W, Faruk NF: HERV-K-specific T cells eliminate diverse HIV-1/2 and SIV primary isolates. / J Clin Invest 2012, 122:4473-489. CrossRef
    123. Toufaily C, Landry S, Leib-Mosch C, Rassart E, Barbeau B: Activation of LTRs from different human endogenous retrovirus (HERV) families by the HTLV-1 tax protein and T-cell activators. / Viruses 2011, 3:2146-159. CrossRef
    124. Muniz L, Egloff S, Ughy B, Jady BE, Kiss T: Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat. / PLoS Pathog 2010, 6:e1001152. CrossRef
    125. Frank O, Jones-Brando L, Leib-Mosch C, Yolken R, Seifarth W: Altered transcriptional activity of human endogenous retroviruses in neuroepithelial cells after infection with Toxoplasma gondii. / J Infect Dis 2006, 194:1447-449. CrossRef
    126. Lee WJ, Kwun HJ, Kim HS, Jang KL: Activation of the human endogenous retrovirus W long terminal repeat by herpes simplex virus type 1 immediate early protein 1. / Mol Cells 2003, 15:75-0.
    127. Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT: Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. / Immunity 2001, 15:579-89. CrossRef
    128. Sutkowski N, Chen G, Calderon G, Huber BT: Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. / J Virol 2004, 78:7852-860. CrossRef
    129. Hsiao FC, Tai AK, Deglon A, Sutkowski N, Longnecker R, Huber BT: EBV LMP-2A employs a novel mechanism to transactivate the HERV-K18 superantigen through its ITAM. / Virology 2009, 385:261-66. CrossRef
    130. Perot P, Mugnier N, Montgiraud C, Gimenez J, Jaillard M, Bonnaud B, Mallet F: Microarray-Based Sketches of the HERV Transcriptome Landscape. / PLoS One 2012, 7:e40194. CrossRef
    131. Paces J, Huang YT, Paces V, Ridl J, Chang CM: New insight into transcription of human endogenous retroviral elements. / N Biotechnol 2012.
  • 作者单位:Mamneet Manghera (1)
    Renée N Douville (1) (2)

    1. Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
    2. Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
  • ISSN:1742-4690
文摘
Humans are symbiotic organisms; our genome is populated with a substantial number of endogenous retroviruses (ERVs), some remarkably intact, while others are remnants of their former selves. Current research indicates that not all ERVs remain silent passengers within our genomes; re-activation of ERVs is often associated with inflammatory diseases. ERVK is the most recently endogenized and transcriptionally active ERV in humans, and as such may potentially contribute to the pathology of inflammatory disease. Here, we showcase the transcriptional regulation of ERVK. Expression of ERVs is regulated in part by epigenetic mechanisms, but also depends on transcriptional regulatory elements present within retroviral long terminal repeats (LTRs). These LTRs are responsive to both viral and cellular transcription factors; and we are just beginning to appreciate the full complexity of transcription factor interaction with the viral promoter. In this review, an exploration into the inflammatory transcription factor sites within the ERVK LTR will highlight the possible mechanisms by which ERVK is induced in inflammatory diseases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700