Predicting biomass and grain protein content using Bayesian methods
详细信息    查看全文
  • 作者:Majdi Mansouri ; Marie-France Destain
  • 关键词:Crop model ; Particle filter ; Prediction
  • 刊名:Stochastic Environmental Research and Risk Assessment (SERRA)
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:29
  • 期:4
  • 页码:1167-1177
  • 全文大小:602 KB
  • 参考文献:Andrews B, Yi T, Iglesias P (2006) Optimal noise filtering in the chemotactic response of Escherichia coli. PLoS Comput Biol 2(11):e154View Article
    Arulampalam M, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174-88View Article
    Basso B, Ritchie J (2005) Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize-alfalfa rotation in michigan. Agric Ecosyst Environ 108(4):329-41View Article
    Brisson N, Mary B, Ripoche D, Jeuffroy M, Ruget F, Nicoullaud B, Gate P, Devienne-Barret F, Antonioletti R, Durr C et al (1998) Stics: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory, and parameterization applied to wheat and corn. Agronomie 18(5-):311-46View Article
    Diepen C, Wolf J, Keulen H, Rappoldt C (1989) Wofost: a simulation model of crop production. Soil Use Manag 5(1):16-4View Article
    Elsheikh AH, Pain C, Fang F, Gomes J, Navon I (2013) Parameter estimation of subsurface flow models using iterative regularized ensemble kalman filter. Stoch Environ Res Risk Assess 27(4):877-97View Article
    Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343-67View Article
    Frutos E, Galindo MP, Leiva V (2014) An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stoch Environ Res Risk Assess 28(1):1629-641View Article
    Gustafsson F, Gunnarsson F, Bergman N, Forssell U, Jansson J, Karlsson R, Nordlund P (2002) Particle filters for positioning, navigation, and tracking. IEEE Trans Signal Process 50(2):425-37View Article
    Hansen S, Jensen H, Nielsen N, Svendsen H (1990) NPo-research, A10: DAISY: soil plant atmosphere system model. Milj?styrelsen, Copenhagen
    Jeuffroy M-H, Recous S (1999) Azodyn: a simple model simulating the date of nitrogen deficiency for decision support in wheat fertilization. Eur J Agron 10(2):129-44View Article
    Kandepu R, Foss B, Imsland L (2008) Applying the unscented Kalman filter for nonlinear state estimation. J Process Control 18(7):753-68View Article
    Kotecha J, Djuric P (2003) Gaussian particle filtering. IEEE Trans Signal Process 51(10):2592-601View Article
    Lee JH, Ricker NL (1994) Extended Kalman filter based nonlinear model predictive control. Ind Eng Chem Res 33(6):1530-541View Article
    Leisenring M, Moradkhani H (2011) Snow water equivalent prediction using bayesian data assimilation methods. Stoch Environ Res Risk Assess 25(2):253-70View Article
    Liu X, Cardiff MA, Kitanidis PK (2010) Parameter estimation in nonlinear environmental problems. Stoch Environ Res Risk Assess 24(7):1003-022View Article
    Liu J, Chen R (1998) Sequential Monte Carlo methods for dynamic systems. J Am Stat Assoc 93(443):1032-044View Article
    Makowski D, Jeuffroy M, Guérif M (2004) Bayesian methods for updating crop-model predictions, applications for predicting biomass and grain protein content. Frontis 3:57-8
    Mansouri M, Dumont B, Destain M-F (2014) Modeling and prediction of time-varying environmental data using advanced bayesian methods. Explor Innov Success Appl Soft Comput 25(7):112-37View Article
    Mansouri M, Dumont B, Leemans V, Destain M-F (2014) Bayesian methods for predicting LAI and soil water content. Precis Agric 15(2):184-01View Article
    Matthies L, Kanade T, Szeliski R (1989) Kalman filter-based algorithms for estimating depth from image sequences. Int J Comput Vis 3(3):209-38View Article
    Meynard J-M, Cerf M, Guichard L, Jeuffroy M-H, Makowski D et al (2002) Which decision support tools for the environmental management of nitrogen? Agronomie-Sciences des Productions Vegetales et de l’Environnement 22(7-):817-30
    Sarkka S (2007) On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Trans Autom Control 52(9):1631-641View Article
    Shu Q, Kemblowski MW, McKee M (2005) An application of ensemble Kalman filter in integral-balance subsurface modeling. Stoch Environ Res Risk Assess 19(5):361-74View Article
    Varlet-Grancher C, Bonhomme R, Chartier M, Artis P (1982) Efficience de la conversion de l’énergie solaire par un couvert végétal. Acta Oecol. Oecol Plant 3(1):3-6
    Williams J, Jones C, Kiniry J, Spanel D (1989) The epic crop growth model. Trans Am Soc Agric Eng 32(2):497-11View Article
    Yan W, Hunt L, Sheng Q, Szlavnics Z (2000) Cultivar evaluation and mega-environment investigation based on the gge biplot. Crop Sci 40(3):597-05View Article
    Yang N, Tian W, Jin Z, Zhang C (2005) Particle filter for sensor fusion in a land vehicle navigation system. Meas Sci Technol 16(3):677View Article
  • 作者单位:Majdi Mansouri (1)
    Marie-France Destain (1)

    1. Département des Sciences et Technologies de l’Environnement, Université de Li?e (GxABT), Gembloux, Belgium
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Mathematical Applications in Environmental Science
    Mathematical Applications in Geosciences
    Probability Theory and Stochastic Processes
    Statistics for Engineering, Physics, Computer Science, Chemistry and Geosciences
    Numerical and Computational Methods in Engineering
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-3259
文摘
This paper deals with the problem of predicting biomass and grain protein content using improved particle filtering (IPF) based on minimizing the Kullback–Leibler divergence. The performances of IPF are compared with those of the conventional particle filtering (PF) in two comparative studies. In the first one, we apply IPF and PF at a simple dynamic crop model with the aim to predict a single state variable, namely the winter wheat biomass, and to estimate several model parameters. In the second study, the proposed IPF and the PF are applied to a complex crop model (AZODYN) to predict a winter-wheat quality criterion, namely the grain protein content. The results of both comparative studies reveal that the IPF method provides a better estimation accuracy than the PF method. The benefit of the IPF method lies in its ability to provide accuracy related advantages over the PF method since, unlike the PF which depends on the choice of the sampling distribution used to estimate the posterior distribution, the IPF yields an optimum choice of this sampling distribution, which also utilizes the observed data. The performance of the proposed method is evaluated in terms of estimation accuracy, root mean square error, mean absolute error and execution times.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700