Commercial cellulosic ethanol: The role of plant-expressed enzymes
详细信息    查看全文
  • 作者:Manuel B. Sainz (1) <br>
  • 关键词:Biofuels ; Cellulosic ethanol ; Cellulases ; Pretreatment ; Biomass ; Enzymes
  • 刊名:In Vitro Cellular & Developmental Biology - Plant
  • 出版年:2009
  • 出版时间:June 2009
  • 年:2009
  • 卷:45
  • 期:3
  • 页码:314-329
  • 全文大小:314KB
  • 参考文献:1. Abdeev R. M.; Goldenkova I. V.; Musiychuk K. A.; Piruzian E. S. Expression of a thermostable bacterial cellulase in transgenic tobacco plants. / Russ. J. Genet. 393: 376鈥?82; 2003. doi:10.1023/A:1023227802029 . CrossRef <br> 2. Aden, A. Biochemical production of ethanol from corn stover: 2007 state of technology model. Technical report NREL/TP-510-43205, National Renewable Energy Laboratory, Golden, CO USA. http://www.nrel.gov/docs/fy08osti/43205.pdf (accessed 8 Jan 2009); 2008. <br> 3. Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, B.; Montague, L.; Slayton, A.; Lukas, J. Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Technical report NREL/TP-510-32438 (http://www.nrel.gov/docs/fy02osti/32438.pdf (accessed 8 Jan 2009); 2002. <br> 4. Agbogbo F. K.; Coward-Kelly G. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, / Pichia stipitis. / Biotechnol. Lett. 30: 1515鈥?524; 2008. doi:10.1007/s10529-008-9728-z . CrossRef <br> 5. Almeida J. R. M.; Modig T.; Petersson A.; Hahn-Hagerdal B.; Liden G.; Gorwa-Grauslund M. F. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by / Saccharomyces cerevisiae. / J. Chem. Technol. Biotechnol. 82: 340鈥?49; 2007. doi:10.1002/jctb.1676 . b.1676">CrossRef <br> 6. Anonymous. Enzyme contract concludes successfully. Ethanol Producer June 2005. http://www.ethanolproducer.com/article.jsp?article_id = 201 (accessed 26 Jan 2009); 2005. <br> 7. Anonymous. Food prices: fact versus fiction. Biofuels International 2(5). biofuels-news.com/content_item_details.php?item_id = 126" class="a-plus-plus">http://biofuels-news.com/content_item_details.php?item_id = 126 (accessed 4 Jan 2009); 2008. <br> 8. Aspegren K.; Mannonen L.; Ritala A.; Puupponen-Pimia R.; Kurten U.; Salmenkallio-Marttila M.; Kauppinen V.; Teeri T. H. Secretion of a heat-stable fungal 尾-glucanase from transgenic, suspension-cultured barley cells. / Mol. Breed 1: 91鈥?9; 1995. doi:10.1007/BF01682092 . CrossRef <br> 9. Berlin A.; Maximenko V.; Gilkes N.; Saddler J. Optimization of enzyme complexes for lignocellulosic hydrolysis. / Biotechnol. Bioeng. 972: 287鈥?96; 2007. doi:10.1002/bit.21238 . bit.21238">CrossRef <br> 10. Biswas G. C. G.; Ransom C.; Sticklen M. Expression of biologically active / Acidothermus cellulolyticus endoglucanase in transgenic maize plants. / Plant Sci. 7: 617鈥?23; 2006. doi:10.1016/j.plantsci.2006.06.004 . CrossRef <br> 11. Bock R. Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. / Curr. Opin. Biotechnol. 18: 100鈥?06; 2007. doi:10.1016/j.copbio.2006.12.001 . bio.2006.12.001">CrossRef <br> 12. Buanafina M. M. O.; Langdon T.; Hauck B.; Dalton S.; Morris P. Expression of a fungal ferulic acid esterase increases cell wall digestibility of tall fescue ( / Festuca arundinacea). / Plant Biotechnol. J. 6: 1鈥?7; 2008. doi:10.1111/j.1467-7652.2007.00317.x . <br> 13. Carlson S. R.; Rudgers G. W.; Zieler H.; Mach J. M.; Luo S.; Grunden E.; Krol C.; Copenhaver G. P.; Preuss D. Meiotic transmission of an / in vitro-assembled autonomous maize minichromosome. / PLoS Genet. 310: 1965鈥?974; 2007. doi:10.1371/journal.pgen.0030179 . CrossRef <br> 14. Carpita N. C.; Defernez M.; Findlay K.; Wells B.; Shoue D. A.; Catchpole G.; Wilson R. H.; McCann M. C. Cell wall architecture of the elongating maize coleoptile. / Plant Physiol. 1272: 551鈥?65; 2003. doi:10.1104/pp.010146 . CrossRef <br> 15. Carroll A.; Somerville C. Cellulosic biofuels. / Annu. Rev. Plant Biol. 60: 165鈥?82; 2009. CrossRef <br> 16. Chang M. C. Y. Harnessing energy from plant biomass. / Curr. Opin. Chem. Biol. 11: 677鈥?84; 2007. doi:10.1016/j.cbpa.2007.08.039 . bpa.2007.08.039">CrossRef <br> 17. Chapple C.; Ladisch M.; Meilan R. Loosening lignin鈥檚 grip on biofuel production. / Nat. Biotechnol. 257: 746鈥?48; 2007. doi:10.1038/nbt0707-746 . bt0707-746">CrossRef <br> 18. Chen F.; Dixon R. A. Lignin modification improves fermentable sugar yields for biofuel production. / Nat. Biotechnol. 257: 759鈥?61; 2007. doi:10.1038/nbt1316 . bt1316">CrossRef <br> 19. Cheryan M.; Mehaia M. A. Ethanol production in a membrane recycle bioreactor. Conversion of glucose using / Saccharomyces cerevisiae. / Process Biochem. 19: 204鈥?08; 1984. <br> 20. Coyle, W. The future of biofuels: a global perspective. Amber Waves 5(5). Available online at berWaves/November07/Features/Biofuels.htm" class="a-plus-plus">http://www.ers.usda.gov/AmberWaves/November07/Features/Biofuels.htm (accessed 7 Jan 2009); 2007. <br> 21. Dai Z.; Hooker B. S.; Anderson D. B.; Thomas S. R. Expression of / Acidothermus cellulolyticus endoglucanase E1 in transgenic tobacco, biochemical characteristics and physiological effects. / Transgenic Res. 9: 43鈥?4; 2000a. doi:10.1023/A:1008922404834 . CrossRef <br> 22. Dai Z.; Hooker B. S.; Anderson D. B.; Thomas S. R. Improved plant-based production of E1 endoglucanase using potato: expression optimization and tissue targeting. / Mol. Breed. 6: 277鈥?85; 2000b. doi:10.1023/A:1009653011948 . CrossRef <br> 23. Dai Z.; Hooker B. S.; Quesenberry R. D.; Gao J. Expression of / Trichoderma reesei exo-cellobiohydrolase I in transgenic tobacco leaves and calli. / Appl. Biochem. Biotechnol. 77鈥?9: 689鈥?99; 1999. doi:10.1385/ABAB:79:1-3:689 . CrossRef <br> 24. Dai Z.; Hooker B. S.; Quesenberry R. D.; Thomas S. R. Optimization of / Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translation modification. / Transgenic Res. 14: 627鈥?43; 2005. doi:10.1007/s11248-005-5695-5 . CrossRef <br> 25. Doi R. H. Cellulases of mesophilic microorganisms鈥攃ellulosome and noncellulosome producers. / Ann. N.Y. Acad. Sci. 1125: 267鈥?79; 2008. doi:10.1196/annals.1419.002 . CrossRef <br> 26. Dale, J. L.; Dugdale, B.; Hafner, G. J.; Hermann, S. R.; Becker, D. K. A construct capable of release in closed circular form from a larger nucleotide sequence permitting site specific expression and/or developmentally regulated expression of selected genetic sequences. International Patent Application WO 01/72996 A1; 2001. <br> 27. Dale, J. L.; Dugdale, B.; Hafner, G. J.; Hermann, S. R.; Becker, D. K.; Harding, R. M.; Chowpongpang, S. Construct capable of release in closed circular form from a larger nucleotide sequence permitting site specific expression and/or developmentally regulated expression of selected genetic sequences. US Patent Application US2004/0121430 A1; 2004. <br> 28. Dunn-Coleman, N.; Landgon, T.; Morris, P. Manipulation of the phenolic acid content and digestibility of plant cell walls by targeted expression of genes encoding cell wall degrading enzymes. US patent application US2003/0024009 A1; 2001. <br> 29. Eggeman T.; Elander R. T. Process and economic analysis of pretreatment technologies. / Bioresour. Technol. 96: 2019鈥?025; 2005. doi:10.1016/j.biortech.2005.01.017 . biortech.2005.01.017">CrossRef <br> 30. Fulton, L.; Howes, T.; Hardy, J. Biofuels for transport鈥攁n international perspective. International Energy Agency, Paris, France. Available online at base/nppdf/free/2004/biofuels2004.pdf" class="a-plus-plus">http://www.iea.org/textbase/nppdf/free/2004/biofuels2004.pdf (accessed 23 Jan 2009); 2004. <br> 31. Galbe M.; Sassner P.; Wingren A.; Zacchi G. Process engineering economics of bioethanol production. / Adv. Biochem. Eng. Biotechnol. 108: 303鈥?27; 2007. doi:10.1007/10_2007_063 . <br> 32. Galbe M.; Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production. / Adv. Biochem. Eng. Biotechnol. 108: 41鈥?5; 2007. doi:10.1007/10_2007_070 . <br> 33. Goldemberg J.; Guardabasi P. Are biofuels a feasible option? / Energy Policy 37: 10鈥?4; 2009. doi:10.1016/j.enpol.2008.08.031 . CrossRef <br> 34. Graham R. L.; Nelson R.; Sheehan J.; Perlack R. D.; Wright L. L. Current and potential U.S. corn stover supplies. / Agron. J. 99: 1鈥?1; 2007. doi:10.1016/S0065-2113(04)92001-9 . CrossRef <br> 35. Greer, D. Commercializing Cellulosic Ethanol. Biocycle 49(11):47. Available online at http://www.jgpress.com/archives/_free/001764.html (accessed 4 Jan 2009); 2008. <br> 36. Gressel J. Transgenics are imperative for biofuel crops. / Plant Sci. 174: 246鈥?63; 2008. doi:10.1016/j.plantsci.2007.11.009 . CrossRef <br> 37. Herbers K.; Flint H. J.; Sonnewald U. Apoplastic expression of the xylanase and 尾 (1-3,1-4) glucanase domains of the / xyn D gene from / Ruminococcus flavefaciens leads to functional polypeptides in transgenic tobacco plants. / Mol. Breed. 2: 81鈥?7; 1996. doi:10.1007/BF00171354 . CrossRef <br> 38. Herbers K.; Wilke I.; Sonnewald U. A thermostable xylanase from / Clostidium thermocellum expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified. / Nat. Biotechnol. 13: 63鈥?6; 1995. doi:10.1038/nbt0195-63 . bt0195-63">CrossRef <br> 39. Himmel M. E.; Ding S.-Y.; Johnson D. K.; Adney W. S.; Nimlos M. R.; Brady J. W.; Foust T. D. Biomass recalcitrance: engineering plants and enzymes for biofuels production. / Science 315: 804鈥?07; 2007. doi:10.1126/science.1137016 . CrossRef <br> 40. Ho N. W. Y.; Chen Z.; Brainard A. P. Genetically engineered / Saccharomyces yeast capable of effective cofermentation of glucose and xylose. / Appl. Environ. Microbiol. 645: 1852鈥?859; 1998. <br> 41. Hood E. E.; Love R.; Lane J.; Bray J.; Clough R.; Pappu K.; Drees C.; Hood K. R.; Yoon S.; Ahmad A.; Howard J. A. Subcellular targeting is a key condition for high level accumulation of cellulase protein in transgenic maize seed. / Plant Biotechnol. J. 5: 709鈥?19; 2007. doi:10.1111/j.1467-7652.2007.00275.x . CrossRef <br> 42. Hooker B. S.; Dai Z.; Anderson D. B.; Quesenberry R. D.; Ruth M. F.; Thomas S. R. Production of microbial cellulases in transgenic crop plants. In: HimmelM. E.; BakerJ.O.; SaddlerJ. N. (eds) Glycosyl hydrolases for biomass conversion. American Chemical Society, Washington, DC, pp 55鈥?0; 2001. <br> 43. Horvath H.; Huang J.; Wong O.; Kohl E.; Okita T.; Kannagara C. G.; von Wettstein D. The production of recombinant proteins in transgenic barley grains. / Proc. Natl. Acad. Sci. U. S. A. 974: 1914鈥?919; 2000. doi:10.1073/pnas.030527497 . CrossRef <br> 44. Houghton, J.; Weatherwax, S.; Ferrell, J. Breaking the biological barriers to cellulosic ethanol: a joint research agenda. US Department of Energy Office of Science and Office of Energy Efficiency and Renewable Energy 206 pp; 2006. <br> 45. Hyunjong B.; Lee D.-S.; Hwang I. Dual targeting of a xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. / J. Exp. Bot. 571: 161鈥?69; 2006. doi:10.1093/jxb/erj019 . b/erj019">CrossRef <br> 46. Ingram L. O.; Aldrich H. C.; Borges A. C. C.; Causey T. B.; Martinez A.; Morales F.; Saleh A.; Underwood S. A.; Yomano L. P.; York S. W.; Zaldivar J.; Zhou S. Enteric bacterial catalysts for fuel ethanol production. / Biotechnol. Prog. 15: 855鈥?66; 1999. doi:10.1021/bp9901062 . bp9901062">CrossRef <br> 47. Jensen L. G.; Olsen O.; Kops O.; Wolf N.; Thomsen K. K.; von Wettstein D. Transgenic barley expressing a protein-engineered, thermostable (1-3,1-4)-尾-glucanase during germination. / Proc. Natl. Acad. Sci. U. S. A. 93: 3487鈥?491; 1996. doi:10.1073/pnas.93.8.3487 . CrossRef <br> 48. Jin R.; Richter S.; Zhong R.; Lamppa G. K. Expression and import of an active cellulase from a thermophilic bacterium into the chloroplast both / in vitro and / in vivo. / Plant Mol. Biol. 51: 493鈥?07; 2003. doi:10.1023/A:1022354124741 . CrossRef <br> 49. Jorgensen H.; Kristensen J. B.; Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. / Biofuels Bioprod. Biorefin. 1: 119鈥?34; 2007. doi:10.1002/bbb.4 . bbb.4">CrossRef <br> 50. Kawazu T.; Ohta T.; Ito K.; Shibata M.; Kimura T.; Saaka K.; Ohmiya K. Expression of a / Ruminococcus albus cellulase gene in tobacco suspension cells. / J. Ferment. Bioeng. 823: 205鈥?09; 1996. doi:10.1016/0922-338X(96)88809-X . CrossRef <br> 51. Kawazu T.; Sun J.-L.; Shibata M.; Kimura T.; Saaka K.; Ohmiya K. Expression of a bacterial endoglucanase gene in tobacco increases digestibility of its cell wall fibers. / J. Biosci. Bioeng. 884: 421鈥?25; 1999. doi:10.1016/S1389-1723(99)80220-5 . CrossRef <br> 52. Kim S.; Dale B. E. Global potential biofuel production from wasted crops and crop residues. / Biomass Bioenerg. 26: 361鈥?75; 2004. doi:10.1016/j.biombioe.2003.08.002 . biombioe.2003.08.002">CrossRef <br> 53. Kim T. H.; Lee Y. Y. Fractionation of corn stover by hot-water and aqueous ammonia treatment. / Bioresour. Technol. 97: 224鈥?32; 2006. doi:10.1016/j.biortech.2005.02.040 . biortech.2005.02.040">CrossRef <br> 54. Kimura T.; Mizutani T.; Tanaka T.; Koyama T.; Sakka K.; Ohmiya K. Molecular breeding of transgenic rice expressing a xylanase domain of the / xynA gene from / Clostridium thermocellum. / Appl. Microbiol. Biotechnol. 62: 374鈥?79; 2003. doi:10.1007/s00253-003-1301-z . CrossRef <br> 55. Kline, K. L.; Oladosu, G. A.; Wolfe, A. K.; Perlack, R. D.; Dale, V. H.; McMahon, M. Biofuel feedstock assessment for selected countries. Report ORNL/TM-2007/224 prepared by Oak Ridge National Laboratory for the US Department of Energy (DOE). Available online at bridge/purl.cover.jsp;jsessionid = FD7D1D5D71C9ACFE53C44AE856766653?purl = /924080-y8ATDg/" class="a-plus-plus">http://www.osti.gov/bridge/purl.cover.jsp;jsessionid=FD7D1D5D71C9ACFE53C44AE856766653?purl=/924080-y8ATDg/ (accessed 4 Jan 2009); 2008. <br> 56. Koonin S. E. Getting serious about biofuels. / Science 311: 435; 2006. doi:10.1126/science.1124886 . CrossRef <br> 57. Lavelle, M.; Garber, K. Fixing the food crisis. US News and World Report, May 19 2008, pp 36鈥?2; 2008. <br> 58. Lebel E. G.; Heifetz P. B.; Ward E. R.; Uknes S. J. Transgenic plant expressing a cellulase. US Patent 7361806 B2; 2008. <br> 59. Li L.; Zhou Y.; Cheng X.; Sun J.; Marita J. M.; Ralph J.; Chiang V. L. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. / Proc. Natl. Acad. Sci. U. S. A. 1008: 4939鈥?944; 2003. doi:10.1073/pnas.0831166100 . CrossRef <br> 60. Li X.; Weng J.-K.; Chapple C. Improvement of biomass through lignin modification. / Plant J. 54: 569鈥?81; 2008. doi:10.1111/j.1365-313X.2008.03457.x . CrossRef <br> 61. Lin Y.; Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. / Appl. Microbiol. Biotechnol. 69: 627鈥?42; 2006. doi:10.1007/s00253-005-0229-x . CrossRef <br> 62. Litzen, D.; Dixon, D.; Gilcrease, P.; Winter, R. Pretreatment of biomass for ethanol production. US Patent Application US2006/0141584 A1; 2006. <br> 63. Liu J.-H.; Selinger L. B.; Cheng K.-J.; Beauchemin K. A.; Moloney M. M. Plant seed oil-bodies as an immobilization matrix for recombinant xylanase from the rumen fungus / Neocallimastix patriciarum. / Mol. Breed. 3: 463鈥?70; 1997. doi:10.1023/A:1009604119618 . CrossRef <br> 64. Lu Y.; Zhang Y.-H. P.; Lynd L. R. Enzyme-microbe synergy during cellulose hydrolysis by / Clostridium thermocellum. / Proc. Natl. Acad. Sci. U. S. A. 10344: 16165鈥?6169; 2006. doi:10.1073/pnas.0605381103 . CrossRef <br> 65. Lynd L. R.; Laser M. S.; Bransby D.; Dale B. E.; Davison B.; Hamilton R.; Himmel M.; Keller M.; McMillan J. D.; Sheehan J.; Wyman C. E. How biotech can transform biofuels. / Nat. Biotechnol. 262: 169鈥?72; 2008. doi:10.1038/nbt0208-169 . bt0208-169">CrossRef <br> 66. Lynd L. R.; van Zyl W. H.; McBride J. E.; Laser M. Consolidated bioprocessing of cellulosic biomass: an update. / Curr. Opin. Biotechnol. 16: 577鈥?83; 2005. doi:10.1016/j.copbio.2005.08.009 . bio.2005.08.009">CrossRef <br> 67. Martinot, E. et al. Renewables 2007: World Status Report. Renewable energy policy network for the 21st century (REN21) and Worldwatch Institute, Washington, DC, USA. Available online at bles2007.pdf" class="a-plus-plus">http://www.worldwatch.org/files/pdf/renewables2007.pdf (accessed 15 Jan 2009); 2007. <br> 68. McCann M. C.; Carpita N. C. Designing the deconstruction of plant cell walls. / Curr. Opin. Plant Biol. 11: 314鈥?20; 2008. doi:10.1016/j.pbi.2008.04.001 . bi.2008.04.001">CrossRef <br> 69. Mei C.; Park S. H.; Sabzikar R.; Qi C.; Ransom C.; Sticklen M. Green tissue-specific production of a microbial endo-cellulase in maize ( / Zea mays L.) endoplasmic-reticulum and mitochondria converts cellulose to fermentable sugars. / J. Chem. Technol. Biotechnol 84: 689鈥?95; 2009. b.2100">CrossRef <br> 70. Merino S. T.; Cherry J. Progress and challenges in enzyme development for biomass utilization. / Adv. Biochem. Eng. Biotechnol. 108: 95鈥?20; 2007. doi:10.1007/10_2007_066 . <br> 71. Murashima K.; Kosugi A.; Doi R. H. Synergistic effects of cellulosmal xylanase and cellulases from / Clostridium cellulovorans on plant cell wall degradation. / J. Bacteriol. 1855: 1518鈥?524; 2003. doi:10.1128/JB.185.5.1518-1524.2003 . CrossRef <br> 72. Nuutila A. M.; Ritala A.; Skadsen R. W.; Mannonen L.; Kauppinen V. Expression of fungal thermotolerant endo-1,4-尾-endoglucanase in transgenic barley seeds during germination. / Plant Mol. Biol. 41: 777鈥?83; 1999. doi:10.1023/A:1006318206471 . CrossRef <br> 73. Ohgren K.; Bura R.; Saddler J.; Zacchi G. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. / Bioresour. Technol. 98: 2503鈥?520; 2007. doi:10.1016/j.biortech.2006.09.003 . biortech.2006.09.003">CrossRef <br> 74. Oraby H.; Venkatesh B.; Dale B.; Ahmad R.; Ransom C.; Oehmke J.; Sticklen M. Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. / Transgen. Res. 16: 739鈥?49; 2007. doi:10.1007/s11248-006-9064-9 . CrossRef <br> 75. Panagiotou G.; Olsson L. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. / Biotechnol. Bioeng. 962: 250鈥?58; 2007. doi:10.1002/bit.21100 . bit.21100">CrossRef <br> 76. Patel M.; Johnson J. S.; Brettell R. L. S.; Jacobsen J.; Xue G. -P. Transgenic barley expressing a fungal xylanase gene in the endosperm of developing grains. / Mol. Breed. 6: 113鈥?23; 2000. doi:10.1023/A:1009640427515 . CrossRef <br> 77. Phillipson B. A. Expression of a hybrid (1-3,1-4)-尾-glucanase in barley protoplasts. / Plant Sci. 91: 195鈥?06; 1993. doi:10.1016/0168-9452(93)90142-M . CrossRef <br> 78. Ransom C.; Balan V.; Biswas G.; Dale B.; Crockett E.; Sticklen M. Heterologous / Acidothermus cellulolyticus 1,4-尾-endoglucanase E1 produced within corn biomass converts corn stover into glucose. / Appl. Biochem. Biotechnol. 136鈥?40: 207鈥?19; 2007. doi:10.1007/s12010-007-9053-3 . CrossRef <br> 79. Rath, A. Focus on raw materials could reap big rewards. Bioenergy Business July/August 2007, pp 16鈥?8; 2007. <br> 80. Sainz, M. B.; Dale, J. Towards cellulosic ethanol from sugarcane bagasse. Proceedings of the Australian Society of Sugar Cane Technologists 31: 18鈥?3; 2009. <br> 81. Sanchez O. J.; Cardona C. A. Trends in biotechnological production of fuel ethanol from different feedstocks. / Bioresour. Technol. 99: 5270鈥?295; 2008. doi:10.1016/j.biortech.2007.11.013 . biortech.2007.11.013">CrossRef <br> 82. Somerville C. Biofuels. / Curr. Biol. 174: R115鈥揜119; 2007. doi:10.1016/j.cub.2007.01.010 . b.2007.01.010">CrossRef <br> 83. Stephanopoulos G. Challenges in engineering microbes for biofuels production. / Science 315: 801鈥?04; 2007. doi:10.1126/science.1139612 . CrossRef <br> 84. Sticklen M. Plant genetic engineering to improve biomass characteristics for biofuels. / Curr. Opin. Biotechnol. 17: 315鈥?19; 2006. doi:10.1016/j.copbio.2006.05.003 . bio.2006.05.003">CrossRef <br> 85. Sticklen M. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. / Nat. Rev. Genet. 9: 433鈥?43; 2008. doi:10.1038/nrg2336 . CrossRef <br> 86. Streatfield S. J. Approaches to achieve high-level heterologous protein production in plants. / Plant Biotechnol. J. 5: 2鈥?5; 2007. doi:10.1111/j.1467-7652.2006.00216.x . CrossRef <br> 87. Sun J.; Kawazu T.; Kimura T.; Karita S.; Sakka K.; Ohmiya K. High expression of the xylanase B gene from / Clostridium stercorarium in tobacco cells. / J. Ferment. Bioeng. 843: 219鈥?23; 1997. doi:10.1016/S0922-338X(97)82057-0 . CrossRef <br> 88. Sun Y.; Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. / Bioresour. Technol. 83: 1鈥?1; 2002. doi:10.1016/S0960-8524(01)00212-7 . CrossRef <br> 89. Sun Y.; Cheng J. J.; Himmel M. E.; Skory C. D.; Adney W. S.; Thomas S. R.; Tisserat B.; Nishimura Y.; Yamamoto Y. T. Expression and characterization of / Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed / Lemna minor 8627. / Bioresour. Technol. 98: 2866鈥?872; 2007. doi:10.1016/j.biortech.2006.09.055 . biortech.2006.09.055">CrossRef <br> 90. Syngenta. The potential of corn amylase for helping to meet US energy needs. bility/pdf/Fact%20Sheet%20The%20Potental%20of%20CA%20for%20Helping%20Meet%20US%20Energy%20Needs.pdf" class="a-plus-plus">http://www.syngenta.com/en/corporate_responsibility/pdf/Fact%20Sheet%20The%20Potental%20of%20CA%20for%20Helping%20Meet%20US%20Energy%20Needs.pdf (accessed 7 February 2009); 2009. <br> 91. Taherzadeh M. J.; Karimi K. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. / BioResources 24: 707鈥?38; 2007. <br> 92. Taylor L. E.; Dai Z.; Decker S. R.; Brunecky R.; Adney W. S.; Ding S.-Y.; Himmel M. E. Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. / Trends Biotechnol. 268: 413鈥?24; 2008. doi:10.1016/j.tibtech.2008.05.002 . btech.2008.05.002">CrossRef <br> 93. Teymouri F.; Alizadeh H.; Laureano-Perez L.; Dale B.; Sticklen M. Effects of ammonia fiber explosion treatment on activity of endoglucanase from / Acidothermus cellulolyticus in transgenic plant. / Appl. Biochem. Biotechnol. 113鈥?16: 1183鈥?191; 2004. doi:10.1385/ABAB:116:1-3:1183 . CrossRef <br> 94. Tyner W. The US ethanol and biofuels boom: its origins, current status and future prospects. / Bioscience 587: 646鈥?53; 2008. doi:10.1641/B580718 . CrossRef <br> 95. US Department of Energy. Biomass program: biomass feedstock composition and property database. Available online at biomass/feedstock_databases.html" class="a-plus-plus">http://www1.eere.energy.gov/biomass/feedstock_databases.html (accessed 5 February 2009); 2009. <br> 96. Viikari L.; Alapuranen M.; Puranen T.; Vehmaanpera J.; Siika-aho M. Thermostable enzymes in lignocellulose hydrolysis. / Adv. Biochem. Eng. Biotechnol. 108: 121鈥?45; 2007. doi:10.1007/10_2007_065 . <br> 97. Vogel J. Unique aspects of the grass cell wall. / Curr. Opin. Plant Biol. 11: 301鈥?07; 2008. doi:10.1016/j.pbi.2008.03.002 . bi.2008.03.002">CrossRef <br> 98. Waltz E. Cellulosic ethanol booms despite unproven business models. / Nat. Biotechnol. 261: 8鈥?; 2008. doi:10.1038/nbt0108-8 . bt0108-8">CrossRef <br> 99. Wang M.; Wu M.; Huo H. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. / Environ. Res. Lett. 2: 024001; 2007(13 pp). CrossRef <br> 100. Weng J. K.; Li X.; Bonawitz N. D.; Chapple C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. / Curr. Opin. Biotechnol. 19: 166鈥?72; 2008. doi:10.1016/j.copbio.2008.02.014 . bio.2008.02.014">CrossRef <br> 101. Wyman C. E. What is (and is not) vital in advancing cellulosic ethanol. / Trends Biotechnol. 254: 153鈥?57; 2007. doi:10.1016/j.tibtech.2007.02.009 . btech.2007.02.009">CrossRef <br> 102. Wyman C. E.; Dale B. E.; Elander R. T.; Holtzapple M.; Ladisch M. R.; Lee Y. Y. Coordinated development of leading biomass pretreatment technologies. / Bioresour. Technol. 96: 1959鈥?966; 2005a. doi:10.1016/j.biortech.2005.01.010 . biortech.2005.01.010">CrossRef <br> 103. Wyman C. E.; Dale B. E.; Elander R. T.; Holtzapple M.; Ladisch M. R.; Lee Y. Y. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. / Bioresour. Technol. 96: 2026鈥?032; 2005b. doi:10.1016/j.biortech.2005.01.018 . biortech.2005.01.018">CrossRef <br> 104. Xue G. P.; Patel M.; Johnson J. S.; Smyth D. J.; Vickers C. E. Selectable marker-free transgenic barley producing a high level of cellulase (1,4-尾-glucanase) in developing grains. / Plant Cell. Rep. 21: 1088鈥?094; 2003. doi:10.1007/s00299-003-0627-4 . CrossRef <br> 105. Yang B.; Wyman C. E. BSA Treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. / Biotechnol. Bioeng. 944: 611鈥?17; 2006. doi:10.1002/bit.20750 . bit.20750">CrossRef <br> 106. Yang B.; Wyman C. E. Pretreatment: the key to unlocking low-cost cellulosic ethanol. / Biofuels Bioproc. Biorefin. 2: 26鈥?0; 2008. doi:10.1002/bbb.49 . bbb.49">CrossRef <br> 107. Yomano L. P.; York S. W.; Ingram L. O. Isolation and characterization of ethanol-tolerant mutants of / Escherichia coli KO11 for fuel ethanol production. / J. Ind. Microbiol. Biotechnol. 20: 132鈥?38; 1998. doi:10.1038/sj.jim.2900496 . CrossRef <br> 108. Yu L.-X.; Gray B. N.; Rutzke C. J.; Walker L. P.; Wilson D. B.; Hanson M. R. Expression of thermostable microbial cellulases in the chloroplasts of nicotine-free tobacco. / J. Biotechnol. 131: 362鈥?69; 2007a. doi:10.1016/j.jbiotec.2007.07.942 . biotec.2007.07.942">CrossRef <br> 109. Yu W.; Han F.; Gao Z.; Vega J. M.; Birchler J. A. Construction and behavior of engineered minichromosomes in maize. / Proc. Natl. Acad. Sci. U. S. A. 10421: 8924鈥?929; 2007b. doi:10.1073/pnas.0700932104 . CrossRef <br> 110. Zeigler M. T.; Thomas S. R.; Danna K. J. Accumulation of a thermostable endo-1,4-尾-d -glucanase in the apoplast of / Arabidopsis thaliana leaves. / Mol. Breed. 6: 37鈥?6; 2000. doi:10.1023/A:1009667524690 . CrossRef <br> 111. Zhang M.; Eddy C.; Deanda K.; Finkelstein M.; Picataggio S. Metabolic engineering of a pentose metabolism pathway in ethanologenic / Zymomonas mobilis. / Science 267: 240鈥?43; 1995. doi:10.1126/science.267.5195.240 . CrossRef <br> 112. Zhang Y.-H. P.; Himmel H. E.; Mielenz J. R. Outlook for cellulase improvement: screening and selection strategies. / Biotechnol. Adv. 24: 452鈥?81; 2006. doi:10.1016/j.biotechadv.2005.10.002 . biotechadv.2005.10.002">CrossRef <br> 113. Zhang Y.-H. P.; Lynd L. R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: non-complexed cellulase systems. / Biotechnol. Bioeng. 887: 797鈥?24; 2004. doi:10.1002/bit.20282 . bit.20282">CrossRef <br> 114. Ziegelhoffer T.; Raasch J. A.; Austin-Phillips S. Dramatic effects of truncation and sub-cellular targeting on the accumulation of recombinant microbial cellulase in tobacco. / Mol. Breed. 8: 147鈥?58; 2001. doi:10.1023/A:1013338312948 . CrossRef <br> 115. Ziegelhoffer T.; Will J.; Austin-Phillips S. Expression of bacterial cellulase genes in transgenic alfalfa ( / Mendicago sativa L.), potato ( / Solanum tuberosum L.) and tobacco ( / Nicotiana tabacum L.). / Mol. Breed. 5: 309鈥?18; 1999. doi:10.1023/A:1009646830403 . CrossRef <br>
  • 作者单位:Manuel B. Sainz (1) <br><br>1. Syngenta Centre for Sugarcane Biofuels Development, Centre for Tropical Crops and Biocommodities, Queensland University of Technology, PO Box 2434, H Block/Level 3/Room 312, 2 George Street, Brisbane Queensland, 4001, Australia <br>
文摘
The use and production of biofuels has risen dramatically in recent yr. Bioethanol comprises 85% of total global biofuels production, with benefits including reduction of greenhouse gas emissions and promotion of energy independence and rural economic development. Ethanol is primarily made from corn grain in the USA and sugarcane juice in Brazil. However, ethanol production using current technologies will ultimately be limited by land availability, government policy, and alternative uses for these agricultural products. Biomass feedstocks are an enormous and renewable source of fermentable sugars that could potentially provide a significant proportion of transport fuels globally. A major technical challenge in making cellulosic ethanol economically viable is the need to lower the costs of the enzymes needed to convert biomass to fermentable sugars. The expression of cellulases and hemicellulases in crop plants and their integration with existing ethanol production systems are key technologies under development that will significantly improve the process economics of cellulosic ethanol production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700