Effects of salinity on the immune response of an ‘osmotic generalist-bird
详细信息    查看全文
  • 作者:Jorge S. Gutiérrez (1)
    José M. Abad-Gómez (1)
    Auxiliadora Villegas (1)
    Juan M. Sánchez-Guzmán (1)
    José A. Masero (1)
  • 关键词:Basal metabolic rate ; Calidris alpina ; Immune responsiveness ; Migration ; Osmoregulation
  • 刊名:Oecologia
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:171
  • 期:1
  • 页码:61-69
  • 全文大小:310KB
  • 参考文献:1. Alonso-Alvarez C, Tella JL (2001) Effects of experimental food restriction and body mass changes on the avian T-cell mediated immune response. Can J Zool 79:101-05. doi:10.1139/cjz-79-1-101 CrossRef
    2. Apanius V (1998) Stress and immune defense. Adv Study Behav 27:133-53 CrossRef
    3. Battley PF, Rogers DI, Piersma T, Koolhaas A (2003) Behavioural evidence for heat-load problems in great knots in tropical Australia fuelling for long-distance flight. Emu 103:97-03 CrossRef
    4. Bennett DC, Gray DA, Hughes MR (2003) Effect of saline intake on water flux and osmotic homeostasis in Pekin ducks ( / Anas platyrhynchos). J Comp Physiol B 173:27-6. doi:10.1007/s00360-002-0306-8
    5. Bennett GF (1993) Phylogenetic distribution and possible evolution of the avian species of the Haemoproteidae. Syst Parasitol 26:39-4 CrossRef
    6. Bentley PJ (2002) Endocrines and osmoregulation: a comparative account in vertebrates, 2nd edn. Springer, Berlin
    7. Blakey R, Zharikov Y, Skilleter GA (2006) Lack of an osmotic constraint on intake rate of the eastern curlew ( / Numenius madagascariensis). J Avian Biol 37:299-05. doi:10.1111/j.2006.0908-8857.03828.x CrossRef
    8. Bonneaud C, Mazuc J, Gonzalez G, Haussy C, Chastel O, Faivre B, Sorci G (2003) Assessing the cost of mounting an immune response. Am Nat 161:367-79. doi:10.1086/346134 CrossRef
    9. Buehler DM, Piersma T, Matson K, Tieleman BI (2008a) Seasonal redistribution of immune function in a migrant shorebird: annual-cycle effects override adjustments to thermal regime. Am Nat 172:783-96. doi:10.1086/592865 CrossRef
    10. Buehler DM, Piersma T, Tieleman BI (2008b) Captive and free-living red knots exhibit differences in non-induced immunity suggesting different immune strategies in different environments. J Avian Biol 39:560-66. doi:10.1111/j.2008.0908-8857.04408.x CrossRef
    11. Buehler DM, Tieleman BI, Piersma T (2009a) Age and environment affect constitutive immune function in Red Knots ( / Calidris canutus). J Ornithol 150:815-25. doi:10.1007/s10336-009-0402-6 CrossRef
    12. Buehler DM, Encinas-Viso F, Petit M, Vézina F, Tieleman BI, Piersma T (2009b) Limited access to food and physiological trade-offs in a long-distance migrant shorebird. II. Constitutive immune function and the acute-phase response. Physiol Biochem Zool 82:561-71. doi:10.1086/603635 CrossRef
    13. Burger J, Gochfeld M (1984) Seasonal variation in size and function of the nasal salt gland of the Franklin’s Gull ( / Larus pipixcan). Comp Biochem Physiol 77:103-10 CrossRef
    14. Bussell JA, Gidman EA, Causton DR, Gwynn-Jones D, Malham SK, Jones MLM, Reynolds B, Seed R (2008) Changes in the immune response and metabolic fingerprint of the mussel, / Mytilus edulis (Linnaeus) in response to lowered salinity and physical stress. J Exp Mar Biol Ecol 358:78-5. doi:10.1016/j.jembe.2008.01.018
    15. Cuesta A, Laiz-Carrión R, Del Río MP, Meseguer J, Mancera JM, Esteban MA (2005) Salinity influences the humoral immune parameters of gilthead seabream ( / Sparus aurata L.). Fish Shellfish Immunol 18:255-61. doi:10.1016/j.fsi.2004.07.009 CrossRef
    16. Demas GE, Zysling DA, Beechler BR, Muehlenbein MP, French SS (2011) Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J Anim Ecol 80:710-30. doi:10.1111/j.1365-2656.2011.01813.x CrossRef
    17. Doch JJ (1997) Salt tolerance of nestling Laughing Gulls: an experimental field investigation. Col Waterbirds 20:449-57 CrossRef
    18. Figuerola J (1999) Effects of salinity on rates of infestation of waterbirds by haematozoa. Ecography 22:681-85 CrossRef
    19. Frederick PC (2002) Wading birds in the marine environment. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, New York, pp 617-55
    20. Fries CR (1986) Effects of environmental stressors and immunosuppressants on immunity in / Fundulus heteroclitus. Am Zool 26:271-82. doi:10.1093/icb/26.1.271
    21. Gessaman JA, Nagy KA (1988) Energy-metabolism: errors in gas exchange conversion factors. Physiol Zool 61:507-13
    22. Gutiérrez JS, Masero JA, Abad-Gómez JM, Villegas A, Sánchez-Guzmán JM (2011a) Understanding the energetic costs of living in saline environments: effects of salinity on basal metabolic rate, body mass and daily energy consumption of a long-distance migratory shorebird. J Exp Biol 214:829-35. doi:10.1242/jeb.048223 CrossRef
    23. Gutiérrez JS, Masero JA, Abad-Gómez JM, Villegas A, Sánchez-Guzmán JM (2011b) Metabolic consequences of overlapping food restriction and cell-mediated immune response in a long-distance migratory shorebird, the little ringed plover / Charadrius dubius. J Avian Biol 42:259-65. doi:10.1111/j.1600-048X.2011.05323.x CrossRef
    24. Gutiérrez JS, Dietz MW, Masero JA, Gill RE Jr, Dekinga A, Battley PF, Sánchez-Guzmán JM, Piersma T (2012) Functional ecology of saltglands in shorebirds: flexible responses to variable environmental conditions. Funct Ecol 26:236-44. doi:10.1111/j.1365-2435.2011.01929.x CrossRef
    25. Goldstein DL (2002) Water and salt balance in seabirds. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, New York, pp 467-83
    26. Hasselquist D (2007) Comparative immunoecology in birds: hypotheses and tests. J Ornithol 148:S571–S582 CrossRef
    27. Hildebrandt JP (1997) Changes in Na+/K+-ATPase expression during adaptive cell differentiation in avian nasal salt gland. J Exp Biol 200:1895-904
    28. Hill RW (1972) Determination of oxygen consumption by use of the paramagnetic oxygen analyzer. J Appl Physiol 33:261-63
    29. Hughes MR (2003) Regulation of salt gland, gut and kidney interactions. Comp Biochem Physiol A 136:507-24. doi:10.1016/j.cbpb.2003.09.005 CrossRef
    30. Jiang IF, Kumar VB, Lee DN, Weng CF (2008) Acute osmotic stress affects Tilapia ( / Oreochromis mossambicus) innate immune responses. Fish Shellfish Immunol 25:841-46. doi:10.1016/j.fsi.2008.09.006 CrossRef
    31. Johnston JW, Bildstein KL (1990) Dietary salt as a physiological constraint in white ibis breeding in an estuary. Physiol Zool 63:190-07
    32. Joseph A, Philip R (2007) Acute salinity stress alters the haemolymph metabolic profile of / Penaeus monodon and reduces immunocompetence to white spot syndrome virus infection. Aquaculture 272:87-7. doi:10.1016/j.aquaculture.2007.08.047 CrossRef
    33. Kelly JP (2000) Foraging distribution and energy balance in wintering Dunlin. PhD dissertation, University of California, Davis
    34. Kendeigh SC, Dol’nik VR, Gavrilov VM (1977) Avian energetics. In: Pinowski J, Kendiegh SC (eds) Granivorous birds in ecosystems. Cambridge University Press, New York, pp 127-04
    35. Klaassen M, Ens BJ (1990) Is salt stress a problem for waders wintering on the Banc d’Arguin, Mauritania? Ardea 78:67-4
    36. Klasing KC, Peng RK (1987) Influence of cell sources, stimulating agents, and incubation conditions on release of interleukin-1 from chicken macrophages. Dev Comp Immunol 11:385-94. doi:10.1016/0145-305X(87)90082-6 CrossRef
    37. Koteja P (1996) Measuring energy metabolism with open-flow respirometric systems: which design to choose? Funct Ecol 10:675-77 CrossRef
    38. Lee KA, Martin LB, Wikelski MC (2005) Responding to inflammatory challenges is less costly for a successful avian invader, the house sparrow ( / Passer domesticus), than its less invasive congener. Oecologia 145:244-51. doi:10.1007/s00442-005-0113-5 CrossRef
    39. Lei F, Poulin R (2011) Effects of salinity on multiplication and transmission of an intertidal trematode parasite. Mar Biol 158:995-003. doi:10.1007/s00227-011-1625-7 CrossRef
    40. Martin LB, Scheuerlein A, Wikelski M (2003) Immune activity elevates energy expenditure of house sparrows: a link between direct and indirect costs? Proc R Soc Lond B 270:153-58. doi:10.1098/rspb.2002.2185 CrossRef
    41. Martin LB, Gilliam J, Han P, Lee KA, Wikelski M (2005) Corticosterone suppresses immune function in temperate but not tropical house sparrows, / Passer domesticus. Gen Comp Endocrinol 140:126-35. doi:10.1016/j.ygcen.2004.10.010 CrossRef
    42. Martin LB, Hasselquist D, Wikelski M (2006a) Immune investments are linked to pace of life in house sparrows. Oecologia 147:565-75. doi:10.1007/s00442-005-0314-y CrossRef
    43. Martin LB, Han P, Lewittes J, Kuhlman JR, Klasing KC, Wikelski M (2006b) Phytohaemagglutinin (PHA) induced skin swelling in birds: histological support for a classic immunoecological technique. Funct Ecol 20:290-00. doi:10.1111/j.1365-2435.2006.01094.x CrossRef
    44. Masero JA (2002) Why don’t Red Knots / Calidris canutus feed extensively on the crustacean / Artemia? Bird Study 49:304-06 CrossRef
    45. Matozzo V, Monari M, Foschi J, Serrazanetti GP, Cattani O, Marin MG (2007) Effects of salinity on the clam / Chamelea gallina. Part I: alterations in immune responses. Mar Biol 151:1051-058. doi:10.1007/s00227-006-0543-6 CrossRef
    46. McCormick SD, Bradshaw D (2006) Hormonal control of salt and water balance in vertebrates. Gen Comp Endocrinol 147:3-. doi:10.1016/j.ygcen.2005.12.009 CrossRef
    47. McEwen B, Biron C, Brunson K, Bulloch K, Chambers W, Dhabhar F, Goldfarb R, Kitson R, Miller A, Spencer R, Weiss J (1997) The role of adrenalcorticoids as modulators of immune function in health and disease: neural, endocrine, and immune interactions. Brain Res Rev 23:79-33 CrossRef
    48. McNab BK (2002) The physiological ecology of vertebrates. A view from energetics. Cornell University Press, Ithaca
    49. Meissner W (2009) A classification scheme for scoring subcutaneous fat depots of shorebirds. J Field Ornithol 80:289-96. doi:10.1111/j.1557-9263.2009.00232.x CrossRef
    50. Mendes L, Piersma T, Lecoq M, Spaans B, Ricklefs RE (2005) Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 109:396-04 CrossRef
    51. Mendes L, Piersma T, Hasselquist D, Matson KD, Ricklefs RE (2006) Variation in the innate and acquired arms of the immune system among five shorebird species. J Exp Biol 209:284-91. doi:10.1242/jeb.02015 CrossRef
    52. Merino S, Martínez J, M?ller AP, Sanabria L, De Lope F, Pérez J, Rodríguez-Caabeiro F (1999) Phytohaemagglutinin injection assay and physiological stress in nestling house martins. Anim Behav 58:219-22 CrossRef
    53. Nilsson J?, Granbom M, R?berg L (2007) Does the strength of an immune response reflect its energetic cost? J Avian Biol 38:488-94. doi:10.1111/j.2007.0908-8857.03919.x
    54. Nystr?m KGK, Pehrsson O (1988) Salinity as a constraint affecting food and habitat choice of mussel-feeding diving ducks. Ibis 130:94-10. doi:10.1111/j.1474-919X.1988.tb00960.x CrossRef
    55. Ortiz RM (2001) Osmoregulation in marine mammals. J Exp Biol 204:1831-844
    56. Owen-Ashley NT, Wingfield JC (2007) Acute phase responses of passerine birds: characterization and seasonal variation. J Ornithol 148:S583–S591. doi:10.1007/s10336-007-0197-2 CrossRef
    57. Peaker M, Linzell JL (1975) Salt glands in birds and reptiles. Cambridge University Press, Cambridge
    58. Piersma T (1997) Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure? Oikos 80:623-31 CrossRef
    59. Piersma T (2002) Energetic bottlenecks and other design constraints in avian annual cycles. Integr Comp Biol 42:51-7 CrossRef
    60. Piersma T, van Gils J, Wiersma P (1996) Family Scolopacidae (sandpipers, snipes and phalaropes). In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world, vol 3., Hoatzin to Auks. Lynx, Barcelona, pp 444-33
    61. Poulin R, Mouritsen KN (2006) Climate change, parasitism and the structure of intertidal ecosystems. J Helminthol 80:183-91 CrossRef
    62. Purdue JR, Haines H (1977) Salt water tolerance and water turnover in the Snowy Plover. Auk 94:248-55
    63. Quillfeldt P, Arriero E, Martínez J, Masello JF, Merino S (2011) Prevalence of blood parasites in seabirds—a review. Front Zool 8:26 CrossRef
    64. R?berg L, Grahn M, Hasselquist D, Svensson E (1998) On the adaptive significance of stress-induced immunosuppression. Proc R Soc Lond B 265:1637-641. doi:10.1098/rspb.1998.0482 CrossRef
    65. Sabat P (2000) Birds in marine and saline environments: living in dry habitats. Rev Chil Hist Nat 73:401-10. doi:10.1007/s00442-006-0377-4
    66. Sapolsky RM (1992) Neuroendocrinology of the stress-response. In: Becker JB, Breedlove SM, Crews D (eds) Behavioral endocrinology. MIT Press, Cambridge, pp 287-24
    67. Sapolsky R, Romero L, Munck A (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55-9 CrossRef
    68. Schmidt-Nielsen K (1997) Animal physiology: adaptation and environment. Cambridge University Press, New York
    69. Schmidt-Nielsen K, Kim TY (1964) The effect of salt intake on the size and function of the salt gland of ducks. Auk 81:160-72 CrossRef
    70. Skadhauge E (1981) Osmoregulation in birds. Springer, Berlin CrossRef
    71. Smits JE, Bortolotti GR, Tella JL (1999) Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Funct Ecol 13:567-72 CrossRef
    72. Staaland H (1967) Anatomical and physiological adaptations of the nasal glands in Charadriiformes birds. Comp Biochem Physiol 23:933-44 CrossRef
    73. Tella JL, Lemus JA, Carrete M, Blanco G (2008) The PHA test reflects acquired T-cell mediated immunocompetence in birds. PLoS One 3:e3295. doi:10.1371/journal.pone.0003295 CrossRef
    74. Tietje WD, Teer JG (1996) Winter feeding ecology of northern shovelers on freshwater and saline wetlands in south Texas. J Wildl Manag 60:843-55 CrossRef
    75. Verhulst S, Riedstra B, Wiersma P (2005) Brood size and immunity costs in zebra finches / Taeniopygia guttata. J Avian Biol 36:22-0. doi:10.1111/j.0908-8857.2005.03342.x CrossRef
    76. Vinkler M, Bainova H, Albrecht T (2010) Functional analysis of the skin-swelling response to phytohaemagglutinin. Funct Ecol 24:1081-086. doi:10.1111/j.1365-2435.2010.01711.x CrossRef
    77. Vinkler M, Albrecht T (2011) Handling ‘immunocompetence-in ecological studies: do we operate with confused terms? J Avian Biol 42:490-93. doi:10.1111/j.1600-048X.2011.05499.x CrossRef
    78. Warnock N, Elphick C, Rubega MA (2002) Shorebirds in the marine environment. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, New York, pp 581-15
    79. Willmer P, Stone G, Johnston I (2005) Environmental physiology of animals. Blackwell, Oxford
  • 作者单位:Jorge S. Gutiérrez (1)
    José M. Abad-Gómez (1)
    Auxiliadora Villegas (1)
    Juan M. Sánchez-Guzmán (1)
    José A. Masero (1)

    1. Conservation Biology Research Group, Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, Avenida de Elvas, 06006, Badajoz, Spain
  • ISSN:1432-1939
文摘
Salt stress can suppress the immune function of fish and other aquatic animals, but such an effect has not yet been examined in air-breathing vertebrates that frequently cope with waters (and prey) of contrasting salinities. We investigated the effects of seawater salinity on the strength and cost of mounting an immune response in the dunlin Calidris alpina, a long-distance migratory shorebird that shifts seasonally from freshwater environments during the breeding season to marine environments during migration and the winter period. Phytohaemagglutinin (PHA)-induced skin swelling, basal metabolic rate (BMR), body mass, fat stores, and plasma ions were measured in dunlins acclimated to either freshwater or seawater (salinity: 0.3 and 35.0?- respectively). Seawater-acclimated dunlins mounted a PHA-induced swelling response that was up to 56?% weaker than those held under freshwater conditions, despite ad libitum access to food. Freshwater-acclimated dunlins significantly increased their relative BMR 48?h after PHA injection, whereas seawater-acclimated dunlins did not. However, this differential immune and metabolic response between freshwater- and seawater-acclimated dunlins was not associated with significant changes in body mass, fat stores or plasma ions. Our results indicate that the strength of the immune response of this small-sized migratory shorebird was negatively influenced by the salinity of marine habitats. Further, these findings suggest that the reduced immune response observed under saline conditions might not be caused by an energy or nutrient limitation, and raise questions about the role of osmoregulatory hormones in the modulation of the immune system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700