Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abioti
详细信息    查看全文
  • 作者:John P Délano-Frier (1)
    Hamlet Avilés-Arnaut (1)
    Kena Casarrubias-Castillo (1)
    Gabriela Casique-Arroyo (1)
    Paula A Castrillón-Arbeláez (1)
    Luis Herrera-Estrella (2)
    Julio Massange-Sánchez (1)
    Norma A Martínez-Gallardo (1)
    Fannie I Parra-Cota (1)
    Erandi Vargas-Ortiz (1)
    María G Estrada-Hernández (1) (3)
  • 刊名:BMC Genomics
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 全文大小:446KB
  • 参考文献:1. Mosyakin S, Robertson K: / Amaranthus / L., in Flora of North America North of Mexico. / Volume 4. NY: New York; 2003.
    2. Sauer J: / Grain amaranths. London: Longman Group; 1976.
    3. Holm L, Doll J, Holm E, Pancho J, Herberger J: / World Weeds: Natural Histories and Distribution. Toronto: JohnWiley & Sons; 1997.
    4. Steckel LE: The dioecious Amaranthus spp.: Here to stay. / Weed Technol 2007, 21:567-70. CrossRef
    5. Mallory MA, Hall RV, McNabb AP, Pratt DB, Jellen EN, Maughan PJ: Development and characterization of microsatellite markers for the grain amaranths. / Crop Sci 2008, 48:1098-106. CrossRef
    6. Iturbide G, Gispert M: / Grain amaranths ( / Amaranthus spp / .). Rome, Italy: FAO; 1994.
    7. Becker R, Wheeler EL, Lorenz K, Stafford AE, Grosjean OK, Betschart AA, Saunders RM: A Compositional Study of Amaranth Grain. / J Food Sci 1981, 46:1175-180. CrossRef
    8. Breene WM: Food Uses of Grain Amaranth. / Cereal Food World 1991, 36:426-30.
    9. Bressani R, Gonzales JM, Zuniga J, Breuner M, Elias LG: Yield, Selected Chemical-Composition and Nutritive-Value of 14 Selections of Amaranth Grain Representing 4 Species. / J Sci Food Agr 1987, 38:347-56. CrossRef
    10. Bressani R, Sanchezmarroquin A, Morales E: Chemical-Composition of Grain Amaranth Cultivars and Effects of Processing on Their Nutritional Quality. / Food Rev Int 1992, 8:23-9. CrossRef
    11. Gorinstein S, Pawelzik E, Delgado-Licon E, Haruenkit R, Weisz M, Trakhtenberg S: Characterisation of pseudocereal and cereal proteins by protein and amino acid analyses. / J Sci Food Agr 2002, 82:886-91. CrossRef
    12. Tucker JB: Amaranth - the Once and Future Crop. / Bioscience 1986, 36:9-3. CrossRef
    13. Huerta-Ocampo J, Barba de la Rosa A: Amaranth: a pseudo-cereal with nutraceutical properties. / Curr Nutr Food Sci 2011, 7:1-. CrossRef
    14. Brenner D, Baltensperger D, Kulakow P, Lehmann J, Myers R, Slabbert M, Sleugh B: Genetic resources and breeding of Amaranthus. / Plant Breeding Reviews 2000, 19:227-85.
    15. Kadereit G, Borsch T, Weising K, Freitag H: Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C-4 photosynthesis. / Int J Plant Sci 2003, 164:959-86. CrossRef
    16. Omami EN, Hammes PS, Robbertse PJ: Differences in salinity tolerance for growth and water-use efficiency in some amaranth ( Amaranthus spp .) genotypes. / New Zeal J Crop Hort 2006, 34:11-2. CrossRef
    17. Jiayi L, W S, L X, L X, G J: An observation of the root system growth of grain amaranth and its drought resistance. / Agric Res Arid Areas 1989, 3:34-1.
    18. Kauffman CS, PW H: / Grain amaranth: A crop with low water requirements and high nutritional value. Praeger Publ., New York: W. Lockeretz; 1983.
    19. Myers R: Amaranth: New crop opportunity. In / Progress in new crops. Edited by: Janick J. Alexandria, VA: ASHS Press; 1996:207-20.
    20. Putnam DH: Agronomic practices for grain amaranth. In / Proc Natl Amaranth Symp, 4th. Edited by: Serv ME. Minneapolis, MN: Univ. of Minnesota, St. Paul; 1990:151-62.
    21. Miller TE, Wing JS, Huete AR: The Agricultural Potential of Selected C-4 Plants in Arid Environments. / J Arid Environ 1984, 7:275-86.
    22. Morison JIL, Gifford RM: Plant-growth and water-use with limited water-supply in high CO 2 concentrations. 2. Plant dry-weight, partitioning and water-use efficiency. / Aust J Plant Physiol 1984, 11:375-84. CrossRef
    23. Weber LE: / Amaranth grain production guide. Rodale Press, Emmaus, PA; 1990.
    24. Hauptli H: / Agronomic potential and breeding strategy for grain amaranths. Maxatawny, PA: Rodale Press, Emmaus, PA; 1977.
    25. Johnson BL, Henderson TL: Water use patterns of grain amaranth in the northern Great Plains. / Agron J 2002, 94:1437-443. CrossRef
    26. Huerta-Ocampo J, Leon-Galvan M, Ortega-Cruz L, Barrera-Pacheco A, De León-Rodríguez A, Mendoza-Hernández G, Barba de la Rosa A: Water stress induces up-regulation of DOF1 and MIF1 transcription factors and down-regulation of proteins involved in secondary metabolism in amaranth roots ( Amaranthus hypochondriacus L.). / Plant Biology 2010.
    27. Huerta-Ocampo JA, Briones-Cerecero EP, Mendoza-Hernandez G, De Leon-Rodriguez A, de la Rosa APB: Proteomic Analysis of Amaranth ( Amaranthus hypochondriacus L.) Leaves under Drought Stress. / Int J Plant Sci 2009, 170:990-98. CrossRef
    28. Maughan PJ, Sisneros N, Luo MZ, Kudrna D, Ammiraju JSS, Wing RA: Construction of an Amaranthus hypochondriacus bacterial artificial chromosome library and genomic sequencing of herbicide target genes. / Crop Sci 2008, 48:85-4. CrossRef
    29. Lee JR, Hong GY, Dixit A, Chung JW, Ma KH, Lee JH, Kang HK, Cho YH, Gwag JG, Park YJ: Characterization of microsatellite loci developed for Amaranthus hypochondriacus and their cross-amplifications in wild species. / Conserv Genet 2008, 9:243-46. CrossRef
    30. Mallory MA, Hall RV, McNabb AP, Pratt DB, Jellen EN, Maughan PJ: Development and characterization of microsatellite markers for the grain amaranths. / Crop Sci 2008, 48:1098-106. CrossRef
    31. Lee RM, Thimmapuram J, Thinglum KA, Gong G, Hernandez AG, Wright CL, Kim RW, Mikel MA, Tranel PJ: Sampling the Waterhemp ( Amaranthus tuberculatus ) Genome Using Pyrosequencing Technology. / Weed Sci 2009, 57:463-69. CrossRef
    32. Riggins CW, Peng YH, Stewart CN, Tranel PJ: Characterization of de novo transcriptome for waterhemp ( Amaranthus tuberculatus ) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes. / Pest Manag Sci 2010, 66:1042-052. CrossRef
    33. Maughan P, Yourstone S, Jellen E, Udall J: SNP discovery via genomic reduction, bar coding, and 454-pyrosequencing in amaranth. / Plant Genome 2009, 2:260-70. CrossRef
    34. Broekaert WF, Marien W, Terras FRG, Debolle MFC, Proost P, Vandamme J, Dillen L, Claeys M, Rees SB, Vanderleyden J, Cammue BPA: Antimicrobial Peptides from Amaranthus caudatus Seeds with Sequence Homology to the Cysteine Glycine-Rich Domain of Chitin-Binding Proteins. / Biochemistry-Us 1992, 31:4308-314. CrossRef
    35. Chagollalopez A, Blancolabra A, Patthy A, Sanchez R, Pongor S: A Novel Alpha-Amylase Inhibitor from Amaranth ( Amaranthus hypochondriacus ) Seeds. / J Biol Chem 1994, 269:23675-3680.
    36. Sanchez-Hernandez C, Martinez-Gallardo N, Guerrero-Rangel A, Valdes-Rodriguez S, Delano-Frier J: Trypsin and alpha-amylase inhibitors are differentially induced in leaves of amaranth ( Amaranthus hypochondriacus ) in response to biotic and abiotic stress. / Physiol Plantarum 2004, 122:254-64. CrossRef
    37. Valdes-Rodriguez S, Cedro-Tanda A, Aguilar-Hernandez V, Cortes-Onofre E, Blanco-Labra A, Guerrero-Rangel A: Recombinant amaranth cystatin (AhCPI) inhibits the growth of phytopathogenic fungi. / Plant Physiol Bioch 2010, 48:469-75. CrossRef
    38. Wu J, Luo X, Guo H, Xiao J, Tian Y: Transgenic cotton, expressing Amaranthus caudatus agglutinin, confers enhanced resistance to aphids. / Plant Breeding 2006, 125:390-94. CrossRef
    39. Roy S, Sadhana P, Begum M, Kumar S, Lodha ML, Kapoor HC: Purification, characterization and cloning of antiviral/ribosome inactivating protein from Amaranthus tricolor leaves. / Phytochemistry 2006, 67:1865-873. CrossRef
    40. Fomsgaard I, A?on M, Barba de la Rosa A, Christophersen C, Dusek K, Délano-Frier J, Espinoza Pérez J, Fonseca A, Janovská D, Kudsk P, Labouriau R, Lacayo-Romero M, Martínez N, Matus F, Matusová K, Mathiassen S, Noellemeyer E, Pedersen H, Stavelikova H, Steffensen S, de Troiani R, Taberner A: Adding Value to Holy Grain: Providing the Key Tools for the Exploitation of Amaranth - the Protein-rich Grain of the Aztecs. In / Results from a Joint European - Latin American Research Project. Denmark: Department of Integrated Pest Management, Aarhus University, Faculty of Agricultural Sciences; 2010.
    41. Adler G, Blumwald E, Bar-Zvi D: The sugar beet gene encoding the sodium/proton exchanger 1 (BvNHX1) is regulated by a MYB transcription factor. / Planta 2010, 232:187-95. CrossRef
    42. de Araujo S, Silveira J, Almeida T, Rocha I, Morais D, Viegas R: Salinity tolerance of halophyte Atriplex nummularia L. grown under increasing NaCl levels. / R Bras Eng Agríc Ambiental 2006, 10:848-54. CrossRef
    43. Guo SL, Yin HB, Zhang X, Zhao FY, Li PH, Chen SH, Zhao YX, Zhang H: Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis . / Plant Mol Biol 2006, 60:41-0. CrossRef
    44. Jha B, Agarwal PK, Reddy PS, Lal S, Sopory SK, Reddy MK: Identification of salt-induced genes from Salicornia brachiata , an extreme halophyte through expressed sequence tags analysis. / Genes Genet Syst 2009, 84:111-20. CrossRef
    45. Kirch HH, Vera-Estrella R, Golldack D, Quigley F, Michalowski CB, Barkla BJ, Bohnert HJ: Expression of water channel proteins in Mesembryanthemum crystallinum . / Plant Physiol 2000, 123:111-24. CrossRef
    46. Sahu BB, Shaw BP: Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima , a natural halophyte, using PCR-based suppression subtractive hybridization. / BMC Plant Biol 2009, 9:69-4. CrossRef
    47. Wang LW, Showalter AM: Cloning and salt-induced, ABA-independent expression of choline mono-oxygenase in Atriplex prostrata . / Physiol Plantarum 2004, 120:405-12. CrossRef
    48. Wu W, Su Q, Xia XY, Wang Y, Luan YS, An LJ: The Suaeda liaotungensis kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment. / Euphytica 2008, 159:17-5. CrossRef
    49. Yamada A, Tsutsumi K, Tanimoto S, Ozeki Y: Plant RelA/SpoT homolog confers salt tolerance in Escherichia coli and Saccharomyces cerevisiae . / Plant Cell Physiol 2003, 44:3-. CrossRef
    50. Zhang Y, Yin H, Li D, Zhu WW, Li QL: Functional analysis of BADH gene promoter from Suaeda liaotungensis K. / Plant Cell Rep 2008, 27:585-92. CrossRef
    51. Casarrubias-Castillo K: Resistencia a bacteriosis en genotipos de amaranto ( Amaranthus spp .) de interés agronómico. In / MSc thesis. CINVESTAV: Departamento de Biotecnología y Bioquímica; 2009.
    52. Vega-Arreguin JC, Ibarra-Laclette E, Jimenez-Moraila B, Martinez O, Vielle-Calzada JP, Herrera-Estrella L, Herrera-Estrella A: Deep sampling of the Palomero maize transcriptome by a high throughput strategy of pyrosequencing. / BMC Genomics 2009., 10:
    53. Yue H, Eastman PS, Wang BB, Minor J, Doctolero MH, Nuttall RL, Stack R, Becker JW, Montgomery JR, Vainer M, Johnston R: An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression. / Nucleic Acids Res 2001, 29:E41-1. CrossRef
    54. Feldman AL, Costouros NG, Wang E, Qian M, Marincola FM, Alexander HR, Libutti SK: Advantages of mRNA amplification for microarray analysis. / Biotechniques 2002, 33:906-14.
    55. Li Y, Li T, Liu SZ, Qiu MY, Han ZY, Jiang ZL, Li RY, Ying K, Xie Y, Mao YM: Systematic comparison of the fidelity of aRNA, mRNA and T-RNA on gene expression profiling using cDNA microarray. / J Biotechnol 2004, 107:19-8. CrossRef
    56. Polacek DC, Passerini AG, Shi CZ, Francesco NM, Manduchi E, Grant GR, Powell S, Bischof H, Winkler H, Stoeckert CJ, Davies PF: Fidelity and enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA. / Physiol Genomics 2003, 13:147-56.
    57. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic Local Alignment Search Tool. / J Mol Biol 1990, 215:403-10.
    58. Sonnhammer ELL, Eddy SR, Durbin R: Pfam: A comprehensive database of protein domain families based on seed alignments. / Proteins 1997, 28:405-20. CrossRef
    59. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G, Consortium GO: Gene Ontology: tool for the unification of biology. / Nat Genet 2000, 25:25-9. CrossRef
    60. Stekel DJ, Git Y, Falciani F: The comparison of gene expression from multiple cDNA libraries. / Genome Res 2000, 10:2055-061. CrossRef
    61. Romualdi C, Bortoluzzi S, D'Alessi F, Danieli GA: IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. / Physiol Genomics 2003, 12:159-62.
    62. De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, Van Loon LC, Dicke M, Pieterse CMJ: Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. / Mol Plant Microbe In 2005, 18:923-37. CrossRef
    63. Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF: Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. / Plant Physiol 2002, 130:2129-141. CrossRef
    64. Taji T, Sakurai T, Mochida K, Ishiwata A, Kurotani A, Totoki Y, Toyoda A, Sakaki Y, Seki M, Ono H, Sakata Y, Tanaka S, Shinozaki K: Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila . / BMC Plant Biol 2008., 8:
    65. Dassanayake M, Haas JS, Bohnert HJ, Cheeseman JM: Shedding light on an extremophile lifestyle through transcriptomics. / New Phytol 2009, 183:764-75. CrossRef
    66. Bakrim A, Maria A, Sayah F, Lafont R, Takvorian N: Ecdysteroids in spinach ( Spinacia oleracea L.): Biosynthesis, transport and regulation of levels. / Plant Physiol Bioch 2008, 46:844-54. CrossRef
    67. Korth KL, Doege SJ, Park SH, Goggin FL, Wang Q, Gomez SK, Liu G, Jia L, Nakata PA: Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. / Plant Physiol 2006, 141:188-95. CrossRef
    68. Schmelz EA, Grebenok RJ, Ohnmeiss TE, Bowers WS: Interactions between Spinacia oleracea and Bradysia impatiens : A role for phytoecdysteroids. / Arch Insect Biochem 2002, 51:204-21. CrossRef
    69. Vargas-Ortiz E: Estudio de la redistribución de carbohidratos y nitrógeno como posible mecanismo de tolerancia a pérdida de tejido foliar por herbivoría y/o da?o mecánico en amaranto. In / MSc thesis. CINVESTAV: Departamento de Biotecnología y Bioquímica; 2009.
    70. Ochoa-Sanchez JC, Parra-Cota FI, Avina-Padilla K, Delano-Frier J, Martinez-Soriano JP: Amaranthus spp.: a new host of "Candidatus Phytoplasma aurantifolia". / Phytoparasitica 2009, 37:381-84. CrossRef
    71. Kumar S, Blaxter ML: Comparing de novo assemblers for 454 transcriptome data. / BMC Genomics 2010, 11:571. CrossRef
    72. Coles ND, Coleman CE, Christensen SA, Jellen EN, Stevens MR, Bonifacio A, Rojas-Beltran JA, Fairbanks DJ, Maughan PJ: Development and use of an expressed sequenced tag library in quinoa ( Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. / Plant Sci 2005, 168:439-47. CrossRef
    73. Park J, Okita TW, Edwards GE: Expression profiling and proteomic analysis of isolated photosynthetic cells of the non-Kranz C-4 species Bienertia sinuspersici . / Funct Plant Biol 2010, 37:1-3. CrossRef
    74. Zhang L, Ma XL, Zhang Q, Ma CL, Wang PP, Sun YF, Zhao YX, Zhang H: Expressed sequence tags from a NaCl-treated Suaeda salsa cDNA library. / Gene 2001, 267:193-00. CrossRef
    75. Xu J, Yin HX, Yang LL, Xie ZX, Liu XJ: Differential salt tolerance in seedlings derived from dimorphic seeds of Atriplex centralasiatica : from physiology to molecular analysis. / Planta 2011, 233:859-71. CrossRef
    76. Puthoff D, Smigocki A: Sugar beet ( Beta vulgaris L.) genes regulated by sugar beet root maggot ( Tetanops myopaeformis ) infestation. / Am Soc Sugar Beet Tech Proc 2005, 33:214-19.
    77. Puthoff DP, Smigocki AC: Insect feeding-induced differential expression of Beta vulgaris root genes and their regulation by defense-associated signals. / Plant Cell Rep 2007, 26:71-4. CrossRef
    78. Leitner-Dagan Y, Ovadis M, Shklarman E, Elad Y, David DR, Vainstein A: Expression and functional analyses of the plastid lipid-associated protein CHRC suggest its role in chromoplastogenesis and stress. / Plant Physiol 2006, 142:233-44. CrossRef
    79. Mesmar : / An investigation into the role of ubiquitination in plant immunity. University of Glasgow; 2009.
    80. Zhang CL, Shi HJ, Chen L, Wang XM, Lu BB, Zhang SP, Liang YA, Liu RX, Qian J, Sun WW, You ZZ, Dong HS: Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae . / BMC Plant Biol 2011., 11:
    81. Wang C, Yang CP, Gao CQ, Wang YC: Cloning and expression analysis of 14 lipid transfer protein genes from Tamarix hispida responding to different abiotic stresses. / Tree Physiol 2009, 29:1607-619. CrossRef
    82. Angelini R, Tisi A, Rea G, Chen MM, Botta M, Federico R, Cona A: Involvement of polyamine oxidase in wound healing. / Plant Physiol 2008, 146:162-77. CrossRef
    83. Oh SK, Baek KH, Seong ES, Joung YH, Choi GJ, Park JM, Cho HS, Kim EA, Lee S, Choi D: CaMsrB2 , pepper Methionine Sulfoxide Reductase B2 , is a novel defense regulator against oxidative stress and pathogen attack. / Plant Physiol 2010, 154:245-61. CrossRef
    84. Kim JS, Kim KA, Oh TR, Park CM, Kang H: Functional characterization of DEAD-Box RNA Helicases in Arabidopsis thaliana under abiotic stress conditions. / Plant Cell Physiol 2008, 49:1563-571. CrossRef
    85. Li DY, Liu HZ, Zhang HJ, Wang XE, Song FM: OsBIRH1, a DEAD-box RNA helicase with functions in modulating defence responses against pathogen infection and oxidative stress. / J Exp Bot 2008, 59:2133-146. CrossRef
    86. Vashisht AA, Tuteja N: Stress responsive DEAD-box helicases: A new pathway to engineer plant stress tolerance. / J Photoch Photobio B 2006, 84:150-60. CrossRef
    87. Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR, Kirst M: High-throughput gene and SNP discovery in Eucalyptus grandis , an uncharacterized genome. / Bmc Genomics 2008., 9:
    88. Velculescu VE, Kinzler KW: Gene expression analysis goes digital. / Nat Biotechnol 2007, 25:878-80. CrossRef
    89. Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. / Nat Rev Genet 2009, 10:57-3. CrossRef
    90. Orellana S, Yanez M, Espinoza A, Verdugo I, Gonzalez E, Ruiz-Lara S, Casaretto JA: The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. / Plant Cell Environ 2010, 33:2191-208. CrossRef
    91. Takatsuji H: Zinc-finger transcription factors in plants. / Cell Mol Life Sci 1998, 54:582-96. CrossRef
    92. Boyle P, Le Su E, Rochon A, Shearer HL, Murmu J, Chu JY, Fobert PR, Despres C: The BTB/POZ Domain of the Arabidopsis Disease Resistance Protein NPR1 Interacts with the Repression Domain of TGA2 to Negate Its Function. / Plant Cell 2009, 21:3700-713. CrossRef
    93. Choi D, Kim JH, Kende H: Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice ( Oryza sativa L.). / Plant Cell Physiol 2004, 45:897-04. CrossRef
    94. Dong CJ, Liu JY: The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. / BMC Plant Biol 2010, 10:47-2. CrossRef
    95. Staswick PE: JAZing up jasmonate signaling. / Trends Plant Sci 2008, 13:66-1. CrossRef
    96. Assun??o AGL, Herrero E, Lin YF, Huettel B, Talukdar S, Smaczniak C, Immink RGH, van Eldik M, Fiers M, Schat H, Aarts MGM: Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. / P Natl Acad Sci USA 2010, 107:10296-0301. CrossRef
    97. Chen XF, Wang Z, Wang XM, Dong J, Ren JZ, Gao HW: Isolation and characterization of GoRAV, a novel gene encoding a RAV-type protein in Galegae orientalis . / Genes Genet Syst 2009, 84:101-09. CrossRef
    98. Chen WQ, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou GZ, Whitham SA, Budworth PR, Tao Y, Xie ZY, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T: Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. / Plant Cell 2002, 14:559-74. CrossRef
    99. Sun W, Xu XN, Zhu HS, Liu AH, Liu L, Li JM, Hua XJ: Comparative Transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. / Plant Cell Physiol 2010, 51:997-006. CrossRef
    100. Huai JL, Zheng J, Wang GY: Overexpression of a new Cys(2)/His(2) zinc finger protein ZmZF1 from maize confers salt and drought tolerance in transgenic Arabidopsis . / Plant Cell Tiss Org 2009, 99:117-24. CrossRef
    101. Wanke D, Hohenstatt ML, Dynowski M, Bloss U, Hecker A, Elgass K, Hummel S, Hahn A, Caesar K, Schleifenbaum F, Harter K, Berendzen KW: Alanine Zipper-Like Coiled-Coil Domains Are Necessary for Homotypic Dimerization of Plant GAGA-Factors in the Nucleus and Nucleolus. / Plos One 2011., 6:
    102. Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC, Lee SY, Lim CO, Cho MJ: A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. / Plant J 2001, 25:247-59. CrossRef
    103. Ganesan G, Sankararamasubramanian HM, Narayanan JM, Sivaprakash KR, Parida A: Transcript level characterization of a cDNA encoding stress regulated NAC transcription factor in the mangrove plant Avicennia marina . / Plant Physiol Bioch 2008, 46:928-34. CrossRef
    104. Jia JP, Fu JJ, Zheng J, Zhou X, Huai JL, Wang JH, Wang M, Zhang Y, Chen XP, Zhang JP, Zhao JF, Su Z, Lv YP, Wang GY: Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize ( Zea mays L.) seedlings. / Plant J 2006, 48:710-27. CrossRef
    105. Han HP, Li YX, Zhou SF: Overexpression of phytoene synthase gene from Salicornia europaea alters response to reactive oxygen species under salt stress in transgenic Arabidopsis . / Biotechnol Lett 2008, 30:1501-507. CrossRef
    106. Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P: The role of aquaporins in cellular and whole plant water balance. / Biochim Biophys Acta, Biomembr 2000, 1465:324-42. CrossRef
    107. Baisakh N, Subudhi PK, Varadwaj P: Primary responses to salt stress in a halophyte, smooth cordgrass ( Spartina alterniflora Loisel.). / Funct Integr Genomic 2008, 8:287-00. CrossRef
    108. Tabuchi T, Kawaguchi Y, Azuma T, Nanmori T, Yasuda T: Similar regulation patterns of choline monooxygenase, phosphoethanolamine N-methyltransferase and S-adenosyl-L-methionine synthetase in leaves of the halophyte Atriplex nummularia L. / Plant Cell Physiol 2005, 46:505-13. CrossRef
    109. Cushman JC, Meyer G, Michalowski CB, Schmitt JM, Bohnert HJ: Salt Stress Leads to Differential Expression of 2 Isogenes of Phosphoenolpyruvate Carboxylase during Crassulacean Acid Metabolism Induction in the Common Ice Plant. / Plant Cell 1989, 1:715-25. CrossRef
    110. Li W, Wang D, Jin T, Chang Q, Yin D, Xu S, Liu B, Liu L: The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic alfalfa ( Medicago sativa L.). / Plant Molecular Biology Reporter 2011, 29:278-90. CrossRef
    111. Senadheera P, Maathuis FJ: Differentially regulated kinases and phosphatases in roots may contribute to inter-cultivar difference in rice salinity tolerance. / Plant Signal Behav 2009., 4:
    112. Han N, Shan Q, Bao H, Wang B: Cloning and characterization of a Ca2+/H+ antiporter from halophyte Suaeda salsa L. / Plant Molecular Biology Reporter 2011, 29:449-57. CrossRef
    113. Chen JH, Sun Y, Sun F, Xia XL, Yin WL: Tobacco plants ectopically expressing the Ammopiptanthus mongolicus AmCBL1 gene display enhanced tolerance to multiple abiotic stresses. / Plant Growth Regulation 2011, 63:259-69. CrossRef
    114. Guan B, Jiang GQ, Wang YX, Wang ZC, Haxim Y, Bao QA, Hu YZ, Zhang FC, Wang Y: Identification of differentially expressed transcripts involved in the salt-stress response of Salsola ferganica by suppression subtractive hybridization. / Plant Cell Tiss Org 2010, 103:343-52. CrossRef
    115. Gong QQ, Li PH, Ma SS, Rupassara SI, Bohnert HJ: Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana . / Plant J 2005, 44:826-39. CrossRef
    116. Harb A, Krishnan A, Ambavaram MMR, Pereira A: Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. / Plant Physiol 2010, 154:1254-271. CrossRef
    117. Wu YJ, Jeong BR, Fry SC, Boyer JS: Change in XET activities, cell wall extensibility and hypocotyl elongation of soybean seedlings at low water potential. / Planta 2005, 220:593-01. CrossRef
    118. Cao XF, Jacobsen SE: Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. / P Natl Acad Sci USA 2002, 99:16491-6498. CrossRef
    119. Verslues PE, Batelli G, Grillo S, Agius F, Mm YS, Zhu J, Agarwal M, Katiyar-Agarwal S, Zhu JK: Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana . / Mol Cell Biol 2007, 27:7771-780. CrossRef
    120. Zhu JH, Fu XM, Koo YD, Zhu JK, Jenney FE, Adams MWW, Zhu YM, Shi HZ, Yun DJ, Hasegawa PM, Bressan RA: An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. / Mol Cell Biol 2007, 27:5214-224. CrossRef
    121. Naver H, Boudreau E, Rochaix JD: Functional studies of Ycf3: its role in assembly of photosystem I and interactions with some of its subunits. / Plant Cell 2001, 13:2731-745. CrossRef
    122. Schwenkert S, Netz DJA, Frazzon J, Pierik AJ, Bill E, Gross J, Lill R, Meurer J: Chloroplast HCF101 is a scaffold protein for [4Fe-4S] cluster assembly. / Biochem J 2010, 425:207-14. CrossRef
    123. Rausell A, Kanhonou R, Yenush L, Serrano R, Ros R: The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. / Plant J 2003, 34:257-67. CrossRef
    124. Diedhiou CJ, Popova OV, Dietz KJ, Golldack D: The SUI-homologous translation initiation factor eIF-1 is involved in regulation of ion homeostasis in rice. / Plant Biology 2008, 10:298-09. CrossRef
    125. Kato Y, Miura E, Ido K, Ifuku K, Sakamoto W: The variegated mutants lacking chloroplastic FtsHs are defective in d1 degradation and accumulate reactive oxygen species. / Plant Physiol 2009, 151:1790-801. CrossRef
    126. Tanaka R, Hirashima M, Satoh S, Tanaka A: The Arabidopsis -accelerated cell death gene ACD1 is involved in oxygenation of pheophorbide a: Inhibition of the pheophorbide a oxygenase activity does not lead to the "Stay-Green" phenotype in Arabidopsis . / Plant Cell Physiol 2003, 44:1266-274. CrossRef
    127. Van Aken O, Whelan J, Van Breusegem F: Prohibitins: mitochondrial partners in development and stress response. / Trends Plant Sci 2010, 15:275-82. CrossRef
    128. Maestri E, Marmiroli M, Visioli G, Marmiroli N: Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. / Environ Exp Bot 2010, 68:1-3. CrossRef
    129. Scippa GS, Di Michele M, Onelli E, Patrignani G, Chiatante D, Bray EA: The histone-like protein H1-S and the response of tomato leaves to water deficit. / J Exp Bot 2004, 55:99-09. CrossRef
    130. Pilati S, Perazzolli M, Malossini A, Cestaro A, Dematte L, Fontana P, Dal Ri A, Viola R, Velasco R, Moser C: Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at veraison. / BMC Genomics 2007, 8:428-50. CrossRef
    131. Schrader J, Moyle R, Bhalerao R, Hertzberg M, Lundeberg J, Nilsson P, Bhalerao RP: Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. / Plant J 2004, 40:173-87. CrossRef
    132. Baskin TI, Meekes HTHM, Liang BM, Sharp RE: Regulation of growth anisotropy in well-watered and water-stressed maize roots. II. Role of cortical microtubules and cellulose microfibrils. / Plant Physiol 1999, 119:681-92. CrossRef
    133. Wang C, Zhang L, Yuan M, Ge Y, Liu Y, Fan J, Ruan Y, Cui Z, Tong S, Zhang S: The microfilament cytoskeleton plays a vital role in salt and osmotic stress tolerance in Arabidopsis . / Plant Biology 2010, 12:70-8. CrossRef
    134. Xu JY, Zhang BL, Jiang CH, Ming F: RceIF5A, encoding an eukaryotic translation initiation factor 5A in Rosa chinensis , can enhance thermotolerance, oxidative and osmotic stress resistance of Arabidopsis thaliana . / Plant Mol Biol 2011, 75:167-78. CrossRef
    135. Ruiz-Ferrer V, Voinnet O: Roles of Plant Small RNAs in Biotic Stress Responses. / Annu Rev Plant Biol 2009, 60:485-10. CrossRef
    136. Sunkar R, Chinnusamy V, Zhu JH, Zhu JK: Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. / Trends Plant Sci 2007, 12:301-09. CrossRef
    137. Gao HJ, Yang HQ, Wang JX: Arginine metabolism in roots and leaves of apple ( Malus domestica Borkh.): The tissue-specific formation of both nitric oxide and polyamines. / Sci Hortic-Amsterdam 2009, 119:147-52. CrossRef
    138. Jubault M, Hamon C, Gravot A, Lariagon C, Delourme R, Bouchereau A, Manzanares-Dauleux MJ: Differential regulation of root arginine catabolism and polyamine metabolism in clubroot-susceptible and partially resistant Arabidopsis genotypes. / Plant Physiol 2008, 146:2008-019. CrossRef
    139. Kuznetsov V, Shevyakova N: Polyamines and stress tolerance in plants. / Plant Stress 2007, 1:50-1.
    140. Puthoff DP, Sardesai N, Subramanyam S, Nemacheck JA, Williams CE: Hfr-2, a wheat cytolytic toxin-like gene, is up-regulated by virulent Hessian fly larval feeding. / Mol Plant Pathol 2005, 6:411-23. CrossRef
    141. Strable J, Borsuk L, Nettleton D, Schnable PS, Irish EE: Microarray analysis of vegetative phase change in maize. / Plant J 2008, 56:1045-057. CrossRef
    142. Subramanyam S, Smith DF, Clemens JC, Webb MA, Sardesai N, Williams CE: Functional characterization of HFR1, a high-mannose N-glycan-specific wheat lectin induced by hessian fly larvae. / Plant Physiol 2008, 147:1412-426. CrossRef
    143. Yu XM, Wang XJ, Wang CF, Chen XM, Qu ZP, Yu XD, Han QM, Zhao J, Guo J, Huang LL, Kang ZS: Wheat defense genes in fungal ( Puccinia striiformis ) infection. / Funct Integr Genomic 2010, 10:227-39. CrossRef
    144. Ehlting J, Mattheus N, Aeschliman DS, Li E, Hamberger B, Cullis IF, Zhuang J, Kaneda M, Mansfield SD, Samuels L, Ritland K, Ellis BE, Bohlmann J, Douglas CJ: Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. / Plant J 2005, 42:618-40. CrossRef
    145. Minic Z, Jamet E, San-Clemente H, Pelletier S, Renou JP, Rihouey C, Okinyo DP, Proux C, Lerouge P, Jouanin L: Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes. / BMC Plant Biol 2009, 9:6. CrossRef
    146. Boerjan W, Ralph J, Baucher M: Lignin biosynthesis. / Annu Rev Plant Biol 2003, 54:519-46. CrossRef
    147. Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R, Kunst L, Wu X, Yephremov A, Samuels L: Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. / Plant J 2007, 52:485-98. CrossRef
    148. Plessl M, Rigola D, Hassinen VH, Tervahauta A, Karenlampi S, Schat H, Aarts MG, Ernst D: Comparison of two ecotypes of the metal hyperaccumulator Thlaspi caerulescens (J. & C. PRESL) at the transcriptional level. / Protoplasma 2010, 239:81-3. CrossRef
    149. van Damme M, Huibers RP, Elberse J, Van den Ackerveken G: Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. / Plant J 2008, 54:785-93. CrossRef
    150. Song SK, Lee MM, Clark SE: POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. / Development 2006, 133:4691-698. CrossRef
    151. Miwa H, Kinoshita A, Fukuda H, Sawa S: Plant meristems: CLAVATA3/ESR -related signaling in the shoot apical meristem and the root apical meristem. / J Plant Res 2009, 122:31-9. CrossRef
    152. Tanaka H, Watanabe M, Sasabe M, Hiroe T, Tanaka T, Tsukaya H, Ikezaki M, Machida C, Machida Y: Novel receptor-like kinase ALE2 controls shoot development by specifying epidermis in Arabidopsis . / Development 2007, 134:1643-652. CrossRef
    153. Pitorre D, Llauro C, Jobet E, Guilleminot J, Brizard JP, Delseny M, Lasserre E: RLK7, a leucine-rich repeat receptor-like kinase, is required for proper germination speed and tolerance to oxidative stress in Arabidopsis thaliana. / Planta 2010, 232:1339-353. CrossRef
    154. Samuel MA, Mudgil Y, Salt JN, Delmas F, Ramachandran S, Chilelli A, Goring DR: Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis . / Plant Physiol 2008, 147:2084-095. CrossRef
    155. Ellis M, Egelund J, Schultz CJ, Bacic A: Arabinogalactan-proteins: key regulators at the cell surface? (vol 153, pg 403, 2010). / Plant Physiol 2010, 154:1012-012.
    156. Dharmawardhana P, Brunner AM, Strauss SH: Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa . / BMC Genomics 2010., 11:
    157. Kurepa J, Wang S, Li Y, Zaitlin D, Pierce AJ, Smalle JA: Loss of 26S proteasome function leads to increased cell size and decreased cell number in Arabidopsis shoot organs. / Plant Physiol 2009, 150:178-89. CrossRef
    158. Irshad M, Canut H, Borderies G, Pont-Lezica R, Jamet E: A new picture of cell wall protein dynamics in elongating cells of Arabidopsis thaliana : Confirmed actors and newcomers. / BMC Plant Biol 2008., 8:
    159. Zhao Q, Dixon RA: Transcriptional networks for lignin biosynthesis: more complex than we thought? / Trends Plant Sci 2011, 16:227-33. CrossRef
    160. Shen WH, Xu L: Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana . / Mol Plant 2009, 2:600-09. CrossRef
    161. Demidov D, Van Damme D, Geelen D, Blattner FR, Houben A: Identification and dynamics of two classes of aurora-like kinases in Arabidopsis and other plants. / Plant Cell 2005, 17:836-48. CrossRef
    162. Sors TG, Martin CP, Salt DE: Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity. / Plant J 2009, 59:110-22. CrossRef
    163. Baluska F, Jasik J, Edelmann HG, Salajova T, Volkmann D: Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent. / Dev Biol 2001, 231:113-24. CrossRef
    164. Strack D, Vogt T, Schliemann W: Recent advances in betalain research. / Phytochemistry 2003, 62:247-69. CrossRef
    165. Ji JB, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon MJ: WOX4 promotes procambial development. / Plant Physiol 2010, 152:1346-356. CrossRef
    166. Islam MM, Hossain MA, Jannat R, Munemasa S, Nakamura Y, Mori IC, Murata Y: Cytosolic alkalization and cytosolic calcium oscillation in Arabidopsis guard cells response to ABA and MeJA. / Plant Cell Physiol 2010, 51:1721-730. CrossRef
    167. Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Amagai M, Kuwata C, Tsugane T, Masuda T, Shimada H, Takamiya K, Ohta H, Tabata S: Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. / DNA Res 2001, 8:153-61. CrossRef
    168. Wijekoon CP, Goodwin PH, Hsiang T: The involvement of two epoxide hydrolase genes, NbEH1.1 and NbEH1.2 , of Nicotiana benthamiana in the interaction with Colletotrichum destructivum , Colletotrichum orbiculare or Pseudomonas syringae pv. tabaci . / Funct Plant Biol 2008, 35:1112-122. CrossRef
    169. Zhang HJ, Dong SM, Wang MF, Wang W, Song WW, Dou XY, Zheng XB, Zhang ZG: The role of vacuolar processing enzyme (VPE) from Nicotiana benthamiana in the elicitor-triggered hypersensitive response and stomatal closure. / J Exp Bot 2010, 61:3799-812. CrossRef
  • 作者单位:John P Délano-Frier (1)
    Hamlet Avilés-Arnaut (1)
    Kena Casarrubias-Castillo (1)
    Gabriela Casique-Arroyo (1)
    Paula A Castrillón-Arbeláez (1)
    Luis Herrera-Estrella (2)
    Julio Massange-Sánchez (1)
    Norma A Martínez-Gallardo (1)
    Fannie I Parra-Cota (1)
    Erandi Vargas-Ortiz (1)
    María G Estrada-Hernández (1) (3)

    1. Unidad de Biotecnología e Ingeniería Genética de Plantas, Cinvestav-Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, Irapuato, Gto., México, C.P. 36821
    2. Laboratorio Nacional de Génomica para la Biodiversidad, Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
    3. Department of Entomology, College of Agricultural Sciences, Penn State University, University Park, PA, 16802, USA
文摘
Background Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs), transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (a)biotic stress-responsive gene expression profiles in grain amaranth. Results A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs). The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing stems of Arabidopsis and black cottonwood (Populus trichocarpa). Conclusions This study represents the first large-scale transcriptomic analysis of A. hypochondriacus, considered to be a highly nutritious and stress-tolerant crop. Numerous genes were found to be induced in response to (a)biotic stress, many of which could further the understanding of the mechanisms that contribute to multiple stress-resistance in plants, a trait that has potential biotechnological applications in agriculture.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700