Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA
详细信息    查看全文
  • 作者:Hossein A. Narouei-Khandan ; Susan E. Halbert…
  • 关键词:Citrus greening ; Candidatus Liberibacter asiaticus ; Diaphorina citri ; Species distribution models ; MaxEnt ; Multi ; model framework
  • 刊名:European Journal of Plant Pathology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:144
  • 期:3
  • 页码:655-670
  • 全文大小:3,841 KB
  • 参考文献:Ammar, E., Shatters, R. G., & Hall, D. G. (2011). Localization of Candidatus Liberibacter asiaticus, associated with citrus Huanglongbing disease, in its psyllid vector using fluorescence in situ hybridization. Journal of Phytopathology, 159(11–12), 726–734.CrossRef
    Aurambout, J. P., Finlay, K. J., Luck, J., & Beattie, G. A. C. (2009). A concept model to estimate the potential distribution of the Asiatic citrus psyllid Diaphorina citri Kuwayama in Australia under climate change—A means for assessing biosecurity risk. Ecological Modelling, 220(19), 2512–2524.CrossRef
    Bassanezi, R. B., Montesino, L. H., Gimenes-Fernandes, N., Yamamoto, P. T., Gottwald, T. R., Amorim, L., & Filho, A. B. (2012). Efficacy of area-wide inoculum reduction and vector control on temporal progress of huanglongbing in young sweet orange plantings. Plant Disease, 97(6), 789–796.CrossRef
    Bellis, G., Hollis, D., & Jacobson, S. (2005). Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), and huanglongbing disease do not exist in the Stapleton Station area of the Northern Territory of Australia. Australian Journal of Entomology, 44(1), 68–70.CrossRef
    Bove, J. M. (2014). Heat-tolerant Asian HLB meets heat-sensitive African HLB in the Arabian Peninsula! Why? Journal of Citrus Pathology, 1(1).
    Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.CrossRef
    Brown, J. L. (2014). SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeography, and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700.CrossRef
    CDFA (2015). Huanglongbing (HLB) Quarantine information. Accessed September 30 2015. http://​www.​cdfa.​ca.​gov/​plant/​pe/​interiorexclusio​n/​hlb_​quarantine.​html
    Chiyaka, C., Singer, B. H., Halbert, S. E., Morris, J. G., & van Bruggen, A. H. (2012). Modeling huanglongbing transmission within a citrus tree. Proceedings of the National Academy of Sciences, 109(30), 12213–12218.CrossRef
    da Graca, J. V., & Korsten, L. (2004). Citrus huanglongbing: Review, present status and future strategies. In Diseases of fruits and vegetables volume I (pp. 229–245). Springer.
    da Graca, J. V., French, J. V., Haslem, P. S., Skaria, M., Sétamou, M., & Salas, B. (2008). Survey for the Asian citrus psyllid, Diaphorina citri, and citrus huanglongbing (greening disease) in Texas. Subtropical Plant Science, 60, 21–26.
    Franklin, J. (2013). Species distribution models in conservation biogeography: developments and challenges. Diversity and Distributions, 19(10), 1217–1223.CrossRef
    Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E., & Thuiller, W. (2012). Invasive species distribution models - how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography, 21(11), 1126–1136.CrossRef
    Gottwald, T. R. (2010). Current epidemiological understanding of citrus huanglongbing. Annual Review of Phytopathology, 48, 119–139.PubMed CrossRef
    Grafton-Cardwell, E. E., Morse, J. G., & Taylor, B. J. (2014). Asian citrus psyllid management strategies for California, 2012 and beyond. Journal of Citrus Pathology, 1(1).
    Gutierrez, A. P., & Ponti, L. (2013). Prospective analysis of the geographic distribution and relative abundance of Asian citrus psyllid (Hemiptera:Liviidae) and citrus greening disease in North America and the Mediterranean Basin. Florida Entomologist, 96(4), 1375–1391.CrossRef
    Halbert, S. E. (2005). The discovery of huanglongbing in Florida. In Proceedings of the 2nd International Citrus Canker and Huanglongbing Research Workshop (pp. 7–11).
    Halbert, S. E., Manjunath, K. L., Ramadugu, C., Brodie, M. W., Webb, S. E., & Lee, R. F. (2010). Trailers transporting oranges to processing plants move Asian citrus psyllids. Florida Entomologist, 93(1), 33–38.CrossRef
    Halbert, S. E., Manjunath, K., Ramadugu, C., & Lee, R. F. (2012). Incidence of huanglongbing-associated candidatus liberibacter asiaticus’ in Diaphorina citri (hemiptera: psyllidae) collected from plants for sale in Florida. Florida Entomologist, 95(3), 617–624.CrossRef
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.CrossRef
    Hoffman, M. T., Doud, M. S., Williams, L., Zhang, M.-Q., Ding, F., Stover, E., et al. (2012). Heat treatment eliminates Candidatus Liberibacter asiaticus’ from infected citrus trees under controlled conditions. Phytopathology, 103(1), 15–22.CrossRef
    Jarnevich, C. S., & Reynolds, L. V. (2011). Challenges of predicting the potential distribution of a slow-spreading invader: a habitat suitability map for an invasive riparian tree. Biological Invasions, 13(1), 153–163.CrossRef
    Kobori, Y., Takasu, F., & Ohto, Y. (2012). Development of an indiviual-based simulation model for the spread of citrus greening disease by the vector insect Diaphorina citri. INTECH Open Access Publisher. http://​cdn.​intechopen.​com/​pdfs/​32853.​pdf
    Kumagai, L. B., LeVesque, C. S., Blomquist, C. L., Madishetty, K., Guo, Y., Woods, P. W., et al. (2014). First report of Candidatus Liberibacter asiaticus associated with citrus Huanglongbing in California. Florida Entomologist, 97, 1825–1828.CrossRef
    Kunta, M., Sétamou, M., Skaria, M., Rascoe, J., Li, W., Nakhla, M. K., & da Graça, J. V. (2012). First report of citrus huanglongbing in Texas. Phytopathology, 102, S4.CrossRef
    Lee, J. A., Halbert, S. E., Dawson, W. O., Robertson, C. J., Keesling, J. E., & Singer, B. H. (2015). Asymptomatic spread of huanglongbing and implications for disease control. Proceedings of the National Academy of Sciences. doi:10.​1073/​pnas.​1508253112 .
    Lewis-Rosenblum, H., Martini, X., Tiwari, S., & Stelinski, L. L. (2015). Seasonal movement patterns and long-range dispersal of Asian citrus psyllid in Florida citrus. Journal of Economic Entomology, 108(1), 3–10.PubMed CrossRef
    Liu, Y. H., & Tsai, J. H. (2000). Effects of temperature on biology and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae). Annals of Applied Biology, 137(3), 201–206.CrossRef
    Lopes, S. A., & Frare, G. F. (2007). Graft transmission and cultivar reaction of citrus to Candidatus liberibacter americanus. Plant Disease, 92(1), 21–24.CrossRef
    Manjunath, K. L., Halbert, S. E., Ramadugu, C., Webb, S., & Lee, R. F. (2008). Detection of Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus huanglongbing in Florida. Phytopathology, 98(4), 387–396.PubMed CrossRef
    Martinez-Corrillo, J. L., Valenzuela-Lagarda, J., Suarez-Beltran, A., & Pérez-López, B. (2015). Three year results of the area wide management program for the Asian Citrus Psyllid Diaphorina citri Kuwayama (Hemíptera: Psyllidae) in southern Sonora, Mexico. Poster presented at: 4th International research conference on HLB, 9–13. Florida, USA.
    Marutani-Hert, M., Hunter, W. B., & Hall, D. G. (2010). Gene response to stress in the Asian citrus psyllid (Hemiptera: Psyllidae). Florida Entomologist, 93(4), 519–525.CrossRef
    Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36, 001–012.CrossRef
    Narouei Khandan, H. (2014). Ensemble models to assess the risk of exotic plant pathogens in a changing climate (Doctoral dissertation). Lincoln University.
    Narouei Khandan, H., Worner, S. P., Jones, E. E., Villjanen-Rollinson, S. L. H., Gallipoli, L., Mazzaglia, A., & Balestra, G. M. (2013). Predicting the potential global distribution of Pseudomonas syringae pv. actinidiae (Psa). New Zealand Plant Protection, 66, 184–193.
    Parry, M., Gibson, G. J., Parnell, S., Gottwald, T. R., Irey, M. S., Gast, T. C., & Gilligan, C. A. (2014). Bayesian inference for an emerging arboreal epidemic in the presence of control. Proceedings of the National Academy of Sciences, 111(17), 6258–6262.CrossRef
    Peterson, A. T. (2011). Ecological niches and geographic distributions (mpb-49). Princeton University Press.
    Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231–259.CrossRef
    Razi, M. F., Keremane, M. L., Ramadugu, C., Roose, M., Khan, I. A., & Lee, R. F. (2014). Detection of citrus Huanglongbing-Associated’Candidatus Liberibacter asiaticus’ in Citrus and Diaphorina citri in Pakistan, seasonal variability, and implications for disease management. Phytopathology, 104(3), 257–268.PubMed CrossRef
    Senay, S. D., Worner, S. P., & Ikeda, T. (2013). Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLoS One, 8(8), e71218.PubMed PubMedCentral CrossRef
    Shen, W., Halbert, S. E., Dickstein, E., Manjunath, K. L., Shimwela, M. M., & van Bruggen, A. H. C. (2013). Occurrence and in-grove distribution of citrus huanglongbing in north central Florida. Journal of Plant Pathology, 95(2), 361–371.
    Tiwari, S., Mann, R. S., Rogers, M. E., & Stelinski, L. L. (2011). Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Management Science, 67(10), 1258–1268.PubMed CrossRef
    Torres-Pacheco, I., López-Arroyo, J., Aguirre-Gómez, J., Guevara-González, R., Yänez-López, R., Hernández-Zul, M., & Quijano-Carranza, J. (2013). Potential distribution in Mexico of Diaphorina citri (Hemiptera: Psyllidae) vector of Huanglongbing pathogen. Florida Entomologist, 96(1), 36–47.CrossRef
    Townsend Peterson, A., Papeş, M., & Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: a comparison of GARP and MaxEnt. Ecography, 30(4), 550–560.CrossRef
    Vaclavik, T., & Meentemeyer, R. K. (2009). Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions? Ecological Modelling, 220(23), 3248–3258.CrossRef
    Vilamiu, R. G. d’A, Ternes, S., Braga, G. A., Laranjeira, F. F., Simos, T. E., Psihoyios, G., et al. (2012). A model for Huanglongbing spread between citrus plants including delay times and human intervention. In AIP Conference Proceedings-American Institute of Physics (Vol. 1479, p. 2315).
    Worner, S. P., Ikeda, T., Leday, G., Zealand, N., & Joy, M. (2010). Surveillance tools for freshwater invertebrates. MAF Biosecurity Technical Paper (In Press). Ministry of Agriculture and Forestry, New Zealand.
    Zhang, M., Powell, C. A., Zhou, L., He, Z., Stover, E., & Duan, Y. (2011). Chemical compounds effective against the citrus huanglongbing bacterium‘Candidatus Liberibacter asiaticus’ in planta. Phytopathology, 101(9), 1097–1103.PubMed CrossRef
  • 作者单位:Hossein A. Narouei-Khandan (1)
    Susan E. Halbert (2)
    Susan P. Worner (3)
    Ariena H. C. van Bruggen (1)

    1. Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
    2. Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL, USA
    3. Bio-Protection Research Centre, Lincoln University, P O Box 85084, Lincoln, New Zealand
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Pathology
    Plant Sciences
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-8469
文摘
Two approaches to correlative species distribution models (MaxEnt and Multi-Model Framework) were used to predict global and local potential distribution of huanglongbing (HLB) caused by Candidatus Liberibacter asiaticus (CLas) and its vector the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama). Long-term climate data were sourced from the Worldclim website. The global distribution of CLas and ACP was gathered from online databases, literature review and communication with specialists. Data on Clas and ACP distribution in the USA were not used in model calibration to allow model validation for independent locations. Both models successfully predicted Florida and coastal areas in the Gulf Coast states as highly suitable for Clas and ACP. The models also predicted that coastal areas in California were climatologically favorable for ACP and Clas, but less so than in Florida. When current USA presence data were included in the models, the suitable areas for ACP establishment expanded to the Central Valley, CA, while this area remained less conducive for CLas. Climate suitability was primarily related to rainfall and secondarily to temperature. Globally, both models predicted that climates in large areas of Africa, Latin America and North Australia were highly suitable for ACP and CLas, while the climate in the Mediterranean area was moderately suitable for ACP but less suitable for CLas, except for that in southern Portugal and Spain. Clas predictions from our models could be informative for countries like Australia, New Zealand, citrus-producing European countries and much of Africa, where CLas and D. citri have not been reported. Keywords Citrus greening Candidatus Liberibacter asiaticus Diaphorina citri Species distribution models MaxEnt Multi-model framework

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700