Plate-based diversity subset screening: an efficient paradigm for high throughput screening of a large screening file
详细信息    查看全文
  • 作者:Andrew S. Bell (1) (2)
    Joseph Bradley (1) (3)
    Jeremy R. Everett (1) (4)
    Michelle Knight (1) (5)
    Jens Loesel (1) (6)
    John Mathias (1) (7)
    David McLoughlin (1) (8)
    James Mills (1) (9)
    Robert E. Sharp (10) (11)
    Christine Williams (1) (12)
    Terence P. Wood (1) (13)
  • 关键词:Rule of 40 (Ro40) ; High throughput screening (HTS) ; Plate based ; Diversity ; Subset ; Screening file
  • 刊名:Molecular Diversity
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:17
  • 期:2
  • 页码:319-335
  • 全文大小:804KB
  • 参考文献:1. Scannell JW, Blanckley A, Boldon H, Warrington B (2012) Diagnosing the decline in pharmaceutical R &D efficiency. Nat Rev Drug Discovery 11:191鈥?00. doi:pan class="a-plus-plus non-url-ref">10.1038/nrd3681 p://dx.doi.org/10.1038/nrd3681">CrossRef
    2. Pammolli F, Magazzini L, Riccaboni M (2011) The productivity crisis in pharmaceutical R &D. Nat Rev Drug Discovery 10:428鈥?38. doi:pan class="a-plus-plus non-url-ref">10.1038/nrd3405 p://dx.doi.org/10.1038/nrd3405">CrossRef
    3. Mullard A (2012) 2011 FDA drug approvals. Nat Rev Drug Discovery 11:91鈥?4. doi:pan class="a-plus-plus non-url-ref">10.1038/nrd3657 p://dx.doi.org/10.1038/nrd3657">CrossRef
    4. Munos B (2009) Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discovery 8:959鈥?68. doi:pan class="a-plus-plus non-url-ref">10.1038/nrd2961 p://dx.doi.org/10.1038/nrd2961">CrossRef
    5. Pereira DA, Williams JA (2007) Origin and evolution of high throughput screening. Br J Pharmacol 152:53鈥?1. doi:pan class="a-plus-plus non-url-ref">10.1038/sj.bjp.0707373 p://dx.doi.org/10.1038/sj.bjp.0707373">CrossRef
    6. H眉ser J (2006) High-throughput screening in drug discovery. Wiley-VCH, Weinheim p://dx.doi.org/10.1002/3527609326">CrossRef
    7. Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, Green DV, Hertzberg RP, Janzen WP, Paslay JW, Schopfer U, Sittampalam GS (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discovery 10:188鈥?95. doi:pan class="a-plus-plus non-url-ref">10.1038/nrd3368
    8. Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening. Curr Opin Pharmacol 9:580鈥?88. doi:pan class="a-plus-plus non-url-ref">10.1016/j.coph.2009.08.004 p://dx.doi.org/10.1016/j.coph.2009.08.004">CrossRef
    9. Bakken GA, Bell AS, Boehm M, Everett JR, Gonzales R, Hepworth D, Klug-McLeod JL, Lanfear J, Loesel J, Mathias J, Wood TP (2012) Shaping a screening file for maximal lead discovery efficiency and effectiveness: elimination of molecular redundancy. J Chem Inf Model 52:2937鈥?949. doi:pan class="a-plus-plus non-url-ref">10.1021/ci300372a p://dx.doi.org/10.1021/ci300372a">CrossRef
    10. Xi H, Lunney EA (2011) The design, annotation, and application of a kinase-targeted library. Methods Mol Biol 685:279鈥?91. doi:pan class="a-plus-plus non-url-ref">10.1007/978-1-60761-931-4_14 p://dx.doi.org/10.1007/978-1-60761-931-4_14">CrossRef
    11. Yeap SK, Walley RJ, Snarey M, van Hoorn WP, Mason JS (2007) Designing compound subsets: comparison of random and rational approaches using statistical simulation. J Chem Inf Model 47:2149鈥?158. doi:pan class="a-plus-plus non-url-ref">10.1021/ci600382m p://dx.doi.org/10.1021/ci600382m">CrossRef
    12. Congreve M, Carr R, Murray C, Jhoti H (2003) A 鈥檙ule of three鈥?for fragment-based lead discovery? Drug Discovery Today 8:876鈥?77 p://dx.doi.org/10.1016/S1359-6446(03)02831-9">CrossRef
    13. Posner BA, Xi H, Mills JE (2009) Enhanced HTS hit selection via a local hit rate analysis. J Chem Inf Model 49:2202鈥?210. doi:pan class="a-plus-plus non-url-ref">10.1021/ci900113d p://dx.doi.org/10.1021/ci900113d">CrossRef
    14. Soulard P, McLaughlin M, Stevens J, Connolly B, Coli R, Wang L, Moore J, Kuo MS, LaMarr WA, Ozbal CC, Bhat BG (2008) Development of a high-throughput screening assay for stearoyl-CoA desaturase using rat liver microsomes, deuterium labeled stearoyl-CoA and mass spectrometry. Anal Chim Acta 627:105鈥?11. doi:pan class="a-plus-plus non-url-ref">10.1016/j.aca.2008.04.017 p://dx.doi.org/10.1016/j.aca.2008.04.017">CrossRef
    15. Everett J, Gardner M, Pullen F, Smith G, Snarey M, Terrett N (2001) The application of non-combinatorial chemistry to lead discovery. Drug Discovery Today 6:779鈥?85. doi:pan class="a-plus-plus non-url-ref">10.1016/S1359-6446(01)01876-1 p://dx.doi.org/10.1016/S1359-6446(01)01876-1">CrossRef
    16. Feng BY, Shoichet BK (2006) Synergy and antagonism of promiscuous inhibition in multiple-compound mixtures. J Med Chem 49:2151鈥?154. doi:pan class="a-plus-plus non-url-ref">10.1021/jm060029z p://dx.doi.org/10.1021/jm060029z">CrossRef
    17. Bender A, Bojanic D, Davies JW, Crisman TJ, Mikhailov D, Scheiber J, Jenkins JL, Deng Z, Hill WA, Popov M, Jacoby E, Glick M (2008) Which aspects of HTS are empirically correlated with downstream success? Curr Opin Drug Discovery Dev 11:327鈥?37
    18. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discovery 6:211鈥?19. doi:pan class="a-plus-plus non-url-ref">10.1038/nrd2220 p://dx.doi.org/10.1038/nrd2220">CrossRef
    19. Larsson A, Jansson A, Aberg A, Nordlund P (2011) Efficiency of hit generation and structural characterization in fragment-based ligand discovery. Curr Opin Chem Biol 15:482鈥?88. doi:pan class="a-plus-plus non-url-ref">10.1016/j.cbpa.2011.06.008 p://dx.doi.org/10.1016/j.cbpa.2011.06.008">CrossRef
    20. Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discovery 9:273鈥?76. doi:pan class="a-plus-plus non-url-ref">10.1038/nrd3139 p://dx.doi.org/10.1038/nrd3139">CrossRef
    21. Hopkins A, Lanfear J, Lipinski C, Beeley L (2005) Chemical tools for indications discovery. Annu Rep Med Chem 40:339鈥?48. doi:pan class="a-plus-plus non-url-ref">10.1016/s0065-7743(05)40022-6 p://dx.doi.org/10.1016/S0065-7743(05)40022-6">CrossRef
    22. Pearlman RS, Smith KM (1998) Novel software tools for chemical diversity. Perspect Drug Discovery Des 9鈥?1:339鈥?53. doi:pan class="a-plus-plus non-url-ref">10.1023/a:1027232610247 p://dx.doi.org/10.1023/A:1027232610247">CrossRef
    23. Crisman TJ, Jenkins JL, Parker CN, Hill WAG, Bender A, Deng Z, Nettles JH, Davies JW, Glick M (2007) 鈥淧late cherry picking鈥? a novel semi-sequential screening paradigm for cheaper, faster, information-rich compound selection. J Biomol Screen 12:320鈥?27. doi:pan class="a-plus-plus non-url-ref">10.1177/1087057107299427
    24. Sukuru SC, Jenkins JL, Beckwith RE, Scheiber J, Bender A, Mikhailov D, Davies JW, Glick M (2009) Plate-based diversity selection based on empirical HTS data to enhance the number of hits and their chemical diversity. J Biomol Screen 14:690鈥?99. doi:pan class="a-plus-plus non-url-ref">10.1177/1087057109335678 p://dx.doi.org/10.1177/1087057109335678">CrossRef
    25. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 23:3鈥?5. doi:pan class="a-plus-plus non-url-ref">10.1016/s0169-409x(96)00423-1 p://dx.doi.org/10.1016/S0169-409X(96)00423-1">CrossRef
    26. Blagg J (2006) Structure鈥揳ctivity relationships for in vitro and in vivo toxicity. Annu Rep Med Chem 41:353鈥?68. doi:pan class="a-plus-plus non-url-ref">10.1016/s0065-7743(06)41024-1 p://dx.doi.org/10.1016/S0065-7743(06)41024-1">CrossRef
    27. Spencer RW (1998) High-throughput screening of historic collections: observations on file size, biological targets, and file diversity. Biotechnol Bioeng 61:61鈥?7 p://dx.doi.org/10.1002/(SICI)1097-0290(199824)61:1<61::AID-BIT11>3.0.CO;2-C">CrossRef
    28. Milne GM (2003) Pharmaceutical productivity鈥攖he imperative for new paradigms. Annu Rep Med Chem 38:383鈥?96. doi:pan class="a-plus-plus non-url-ref">10.1016/s0065-7743(03)38036-4 p://dx.doi.org/10.1016/S0065-7743(03)38036-4">CrossRef
    29. Leardi R (2001) Genetic algorithms in chemometrics and chemistry: a review. J Chemom 15:559鈥?69. doi:pan class="a-plus-plus non-url-ref">10.1002/cem.651 p://dx.doi.org/10.1002/cem.651">CrossRef
    30. SciTegic/Accelrys (2006) Pipeline Pilot v5.1
    31. Leo AJ, Hoekman D (2000) Calculating log P(oct) with no missing fragments: the problem of estimating new interaction parameters. Perspect Drug Discovery Des 18:19鈥?8. doi:pan class="a-plus-plus non-url-ref">10.1023/a:1008739110753 p://dx.doi.org/10.1023/A:1008739110753">CrossRef
    32. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714鈥?717. doi:pan class="a-plus-plus non-url-ref">10.1021/jm000942e p://dx.doi.org/10.1021/jm000942e">CrossRef
    33. Barnard JM, Downs GM (1997) Chemical fragment generation and clustering software. J Chem Inf Comput Sci 37:141鈥?42. doi:pan class="a-plus-plus non-url-ref">10.1021/ci960090k p://dx.doi.org/10.1021/ci960090k">CrossRef
    34. Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39:2887鈥?893. doi:pan class="a-plus-plus non-url-ref">10.1021/jm9602928 p://dx.doi.org/10.1021/jm9602928">CrossRef
    35. Priest BT (2009) Future potential and status of selective sodium channel blockers for the treatment of pain. Curr Opin Drug Discovery Dev 12:682鈥?92
    36. Deacon M, Singleton D, Szalkai N, Pasieczny R, Peacock C, Price D, Boyd J, Boyd H, Steidl-Nichols JV, Williams C (2007) Early evaluation of compound QT prolongation effects: a predictive 384-well fluorescence polarization binding assay for measuring hERG blockade. J Pharmacol Toxicol Methods 55:238鈥?47. doi:pan class="a-plus-plus non-url-ref">10.1016/j.vascn.2006.09.003
    37. Kaczorowski GJ, Garcia ML, Bode J, Hess SD, Patel UA (2011) The importance of being profiled: improving drug candidate safety and efficacy using ion channel profiling. Front Pharmacol 2:78. doi:pan class="a-plus-plus non-url-ref">10.3389/fphar.2011.00078 p://dx.doi.org/10.3389/fphar.2011.00078">CrossRef
    38. Gribbon P, Sewing A (2003) Fluorescence readouts in HTS: no gain without pain? Drug Discovery Today 8:1035鈥?043. doi:pan class="a-plus-plus non-url-ref">10.1016/S1359-6446(03)02895-2 p://dx.doi.org/10.1016/S1359-6446(03)02895-2">CrossRef
    39. Parker LC, Prince LR, Sabroe I (2007) Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol 147:199鈥?07. doi:pan class="a-plus-plus non-url-ref">10.1111/j.1365-2249.2006.03203.x p://dx.doi.org/10.1111/j.1365-2249.2006.03203.x">CrossRef
    40. Nathans R, Cao H, Sharova N, Ali A, Sharkey M, Stranska R, Stevenson M, Rana TM (2008) Small-molecule inhibition of HIV-1 Vif. Nat Biotechnol 26:1187鈥?192. doi:pan class="a-plus-plus non-url-ref">10.1038/nbt.1496
    41. Clackson T (2000) Regulated gene expression systems. Gene Ther 7:120鈥?25. doi:pan class="a-plus-plus non-url-ref">10.1038/sj.gt.3301120 p://dx.doi.org/10.1038/sj.gt.3301120">CrossRef
    42. Gribbon P, Schaertl S, Wickenden M, Williams G, Grimley R, Stuhmeier F, Preckel H, Eggeling C, Kraemer J, Everett J, Keighley WW, Sewing A (2004) Experiences in implementing uHTS-cutting edge technology meets the real world. Curr Drug Discovery Technol 1:27鈥?5. doi:pan class="a-plus-plus non-url-ref">10.2174/1570163043484798 p://dx.doi.org/10.2174/1570163043484798">CrossRef
    43. Rogers D, Brown RD, Hahn M (2005) Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J Biomol Screen 10:682鈥?86. doi:pan class="a-plus-plus non-url-ref">10.1177/1087057105281365 p://dx.doi.org/10.1177/1087057105281365">CrossRef
    44. Daylight Chemical Information Systems Inc. (2005) Daylight Toolkit v4.91
    45. Tripos Inc. (2005) DiverseSolutions
    46. ThermoScientific. p://www.thermoscientific.com" class="a-plus-plus">http://www.thermoscientific.com. Accessed 26 Feb 2013
  • 作者单位:Andrew S. Bell (1) (2)
    Joseph Bradley (1) (3)
    Jeremy R. Everett (1) (4)
    Michelle Knight (1) (5)
    Jens Loesel (1) (6)
    John Mathias (1) (7)
    David McLoughlin (1) (8)
    James Mills (1) (9)
    Robert E. Sharp (10) (11)
    Christine Williams (1) (12)
    Terence P. Wood (1) (13)

    1. Pfizer Worldwide Research and Development, Sandwich, Kent, UK
    2. Imperial College, London, UK
    3. Scitegrity Ltd, Discovery Park, Sandwich, Kent, UK
    4. University of Greenwich, Chatham Maritime, Kent, UK
    5. Canterbury Christchurch University, Canterbury, Kent, UK
    6. Peter Fisk Associates Limited, Canterbury, Kent, UK
    7. Pfizer Research, Cambridge, MA, USA
    8. Eli Lilly & Company, Indianapolis, IN, USA
    9. Sandexis, Canterbury, Kent, UK
    10. Pfizer Worldwide Research & Development, Groton, CT, USA
    11. Intrexon Corporation, San Carlos, CA, USA
    12. Kent and Canterbury Hospital, Canterbury, Kent, UK
    13. TP & AAW Consultancy, Cliftonville, Kent, UK
  • ISSN:1573-501X
文摘
The screening files of many large companies, including Pfizer, have grown considerably due to internal chemistry efforts, company mergers and acquisitions, external contracted synthesis, or compound purchase schemes. In order to screen the targets of interest in a cost-effective fashion, we devised an easy-to-assemble, plate-based diversity subset (PBDS) that represents almost the entire computed chemical space of the screening file whilst comprising only a fraction of the plates in the collection. In order to create this file, we developed new design principles for the quality assessment of screening plates: the Rule of 40 (Ro40) and a plate selection process that insured excellent coverage of both library chemistry and legacy chemistry space. This paper describes the rationale, design, construction, and performance of the PBDS, that has evolved into the standard paradigm for singleton (one compound per well) high-throughput screening in Pfizer since its introduction in 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700