New approach to the mitotype classification in black honeybee Apis mellifera mellifera and Iberian honeybee Apis mellifera iberiensis
详细信息    查看全文
  • 作者:R. A. Ilyasov ; A. V. Poskryakov ; A. V. Petukhov…
  • 关键词:black honeybee ; Apis melifera melifera ; evolutionary lineage M ; mtDNA COI–COII intergenic region ; mitotypic classification of honeybee ; single nucleotide polymorphism (SNP)
  • 刊名:Russian Journal of Genetics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:52
  • 期:3
  • 页码:281-291
  • 全文大小:1,067 KB
  • 参考文献:1.Garnery, L., Cornuet, J.-M., and Solignac, M., Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis, Mol. Ecol., 1992, vol. 1, no. 3, pp. 145–154.CrossRef PubMed
    2.Estoup, A., Garnery, L., Solignac, M., and Cornuet, J., Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and tests of infinite allele and stepwise mutation models, Genetics, 1995, vol. 140, pp. 679–695.PubMed PubMedCentral
    3.Il’yasov, R.A., Apis mellifera mellifera L. polymorphism in the Urals, Cand. Sci. (Biol.) Dissertation, Ufa: Inst. Biokhim. Genet. Ufa Nauch. Tsentra Ross. Akad. Nauk, 2006, p 177.
    4.Meixner, M.D., Leta, M.A., Koeniger, N., and Fuchs, S., The honey bees of Ethiopia represent a new subspecies of Apis mellifera—Apis mellifera simensis n. ssp., Apidologie, 2011, vol. 42, pp. 425–437.CrossRef
    5.Papachristoforou, A., Rortais, A., Bouga, M., et al., Genetic characterization of the Cyprian honey bee (Apis mellifera cypria) based on microsatellites and mitochondrial DNA polymorphisms, J. Apic. Sci., 2013, vol. 57, no. 2, pp. 127–134.
    6.Pinto, M.A., Henriques, D., Chavez-Galarza, J., et al., Genetic integrity of the dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data, J. Apic. Res., 2014, vol. 53, no. 2, pp. 269–278.CrossRef
    7.Ilyasov, R.A., Poskryakov, A.V., and Nikolenko, A.G., New SNP markers of the honeybee vitellogenin gene (Vg) used for identification of subspecies Apis mellifera mellifera L., Russ. J. Genet., 2015, vol. 51, no. 2, pp. 163–168.CrossRef
    8.Jaffe, R., Dietmann, V., Alssopp, M., et al., Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses, Conserv. Biol., 2009, vol. 24, no. 2, pp. 583–591.CrossRef PubMed
    9.European Food Safety Authority (EFSA), Bee mortality and bee surveillance in Europe, CFP/EFSA/AMU/ 2008/02, Scientific Report, Question number EFSAQ-2009-00801, 2009.
    10.Nikolenko, A.G. and Poskryakov, A.V., Polymorphism of locus COI-COII of mitochondrial DNA in the honeybee Apis mellifera L. from the Southern Ural region, Russ. J. Genet., 2002, vol. 38, no. 4, pp. 364–368.CrossRef
    11.Nikonorov, Yu.M., Ben’kovskaya, G.V., Poskryakov, A.V., et al., The use of a PCR method for controlling purebreeding of honeybees Apis mellifera mellifera L. in the Southern Urals, Russ. J. Genet., 1998, vol. 34, no. 11, pp. 1574–1577.
    12.Ilyasov, R.A., Petukhov, A.V., Poskryakov, A.V., and Nikolenko, A.G., Local honeybee (Apis mellifera mellifera L.) populations in the Urals, Russ. J. Genet., 2007, vol. 43, no. 6, pp. 709–711.CrossRef
    13.Il’yasov, R.A. and Poskryakov, A.V., Phylogenetics of the Apis mellifera subspecies, Pchelovodstvo, 2006, no. 7, pp. 18–19.
    14.Kolbina, L.M., Nepeivoda, S.N., Vorob’eva, S.L., et al., Genetic differentiation of the honeybee (Apis mellifera L.) populations in Udmurt Republic, Agrar. Nauka Evro-Severo-Vost., 2011, no. 6, pp. 46–50.
    15.Il’yasov, R.A., Poskryakov, A.V., Petukhov, A.V., and Nikolenko, A.G., Genetic differentiation of local populations of the dark European bee Apis mellifera mellifera L. in the Urals, Russ. J. Genet., 2015, vol. 51, no. 7, pp. 677–682.CrossRef
    16.Rortais, A., Arnold, G., Alburaki, M., et al., Review of the DraI COI-COII test for the conservation of the black honeybee (Apis mellifera mellifera), Conserv. Genet. Res., 2011, vol. 3, pp. 383–391.CrossRef
    17.Strange, J.-P., Garnery, L., and Sheppard, W.S., Morphological and molecular characterization of the Landes honeybee (Apis mellifera L.) ecotype for genetic conservation, J. Insect. Conserv., 2007, vol. 12, pp. 527–537.CrossRef
    18.Miguel, I., Baylac, M., Iriondo, M., et al., Both geometric morphometric and microsatellite data consistently support the differentiation of the Apis mellifera M evolutionary branch, Apidologie, 2011, vol. 42, pp. 150–161.CrossRef
    19.Meixner, M.D., Pinto, M.A., Bouga, M., et al., Standard methods for characterizing subspecies and ecotypes of Apis mellifera, J. Apic. Res., 2013, vol. 52, no. 4. doi 10.3896/IBRA.1.52.4.05
    20.Jensen, A.B., Palmer, K.A., Boomsma, J.J., and Pedersen, B.V., Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in northwest Europe, Mol. Ecol., 2005, vol. 14, pp. 93–106.
    21.Kauhausen-Keller, D. and Keller, R., Morphometrical control of pure race breeding of honeybee (Apis mellifera L.), Apidologie, 1994, vol. 25, pp. 133–143.CrossRef
    22.Maul, V. and Hahnle, A., Morphometric studies with purebred stock of Apis mellifera carnica Pollmann from Hessen, Apidologie, 1994, vol. 25, pp. 19–132.CrossRef
    23.Rhymer, J.M. and Simberloff, D., Extension by hybridization and introgression, Annu. Rev. Ecol. Syst., 1996, vol. 27, pp. 83–109.CrossRef
    24.Jensen, A.B., Palmer, K.A., Chaline, N., et al., Quantifying honey bee mating range and isolation in semiisolated valleys by DNA microsatellite paternity analysis, Conserv. Biol., 2005, vol. 6, pp. 527–537.
    25.Perrier, C., Strange, J., Langella, O., et al., Diversité génétique, introgressions mitochondriales et nucléaires dans une population d’abeilles des Landes de Gascogne, Actes Bur. Ressour. Génét., 2003, vol. 4, pp. 79–100.
    26.Garnery, L., Solignac, M., Celebrano, G., and Cornuet, J.-M., A simple test using restricted PCR-amplified mitochondrial DNA to study the genetic structure of Apis mellifera L., Experientia, 1993, vol. 49, pp. 1016–1021.CrossRef
    27.Arias, M.C. and Sheppard, W.S., Molecular phylogenetics of honeybee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequence, Mol. Phylogenet. Evol., 1996, vol. 5, pp. 557–566.CrossRef PubMed
    28.Crozier, R.H., Crozier, Y.C., and Mackinlay, A.G., The CO-I and CO-II region of the honeybee mitochondrial DNA: evidence for variation in insect mitochondrial evolutionary rates, Mol. Biol. Evol., 1989, vol. 6, pp. 399–695.PubMed
    29.Garnery, L., Mosshine, E.H., and Cornuet, J.-M., Mitochondrial DNA variation in Moroccan and Spanish honey bee populations, Mol. Ecol., 1995, vol. 4, pp. 465–471.CrossRef
    30.Smith, D.R., Mitochondrial DNA and honeybee biogeography, Diversity in the Genus Apis, Smith, D.R., Ed., Boulder, CO: Westview, 1991, pp. 131–176.
    31.Clarke, K.E., Olroyd, B.P., Javier, J., et al., Origin of honeybees (Apis mellifera L.) from the Yucatan peninsula inferred from mitochondrial DNA analysis, Mol. Ecol., 2001, vol. 10, pp. 1347–1355.CrossRef PubMed
    32.De la Rua, P., Galian, J., and Serrano, J., Mitochondrial variability in the Canary Islands honeybees, Mol. Ecol., 1998, vol. 7, pp. 1543–1547.CrossRef PubMed
    33.De la Rua, P., Galian, J., Serrano, J., and Moritz, R.F.A., Molecular characterization and population structure of the honeybees from the Balearic Islands (Spain), Apidologie, 2001, vol. 32, pp. 417–427.CrossRef
    34.De la Rua, P., Hernandez-Garcia, R., Jimenez, Y., et al., Biodiversity of Apis mellifera iberica (Hymenoptera: Apidae) from northeastern Spain assessed by mitochondrial analysis, Insect. Syst. Evol., 2005, vol. 36, pp. 21–28.CrossRef
    35.Franck, P., Garnery, L., Celebrano, G., et al., Hybrid origin of honeybees from Italy (Apis mellifera ligustica) and Sicily (A. m. sicula), Mol. Ecol., 2000, vol. 9, pp. 907–921.CrossRef PubMed
    36.Franck, P., Garnery, L., Loiseau, A., et al., Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data, Heredity, 2001, vol. 86, pp. 420–430.CrossRef PubMed
    37.Garnery, L., Franck, P., Baudry, E., et al., Genetic biodiversity of the West European honeybee (Apis mellifera mellifera and A. m. iberica): 1. Mitochondrial DNA, Genet. Sel. Evol., 1998, vol. 30, pp. 31–47.CrossRef
    38.Kandemir, I., Kence, M., Sheppard, W.S., and Kence, A., Mitochondrial DNA variation in honey bee (Apis mellifera L.) populations from Turkey, J. Apic. Res., 2006, vol. 45, pp. 33–38.CrossRef
    39.Kandemir, I., Meixner, M.D., Ozkan, A., and Sheppard, W.S., Genetic characterization of honey bee (Apis mellifera cypria) populations in northern Cyprus, Apidologie, 2006, vol. 37, pp. 547–555.CrossRef
    40.Miguel, I., Iriondo, M., Garnery, L., et al., Gene flow within the M evolutionary lineage of Apis mellifera: role of the Pyrenees, isolation by distance and post-glacial recolonization routes in the Western Europe, Apidologie, 2007, vol. 38, pp. 141–155.
    41.Susnik, S., Kozmus, P., Poklukar, J., and Meglic, V., Molecular characterization of indigenous Apis mellifera carnica in Slovenia, Apidologie, 2004, vol. 35, pp. 623–636.CrossRef
    42.Palmer, M.R., Smith, D.R., and Kaftanoglu, O., Turkish honeybees: genetic variation and evidence of a fourth lineage of Apis mellifera mtDNA, J. Hered., 2000, vol. 91, pp. 42–46.CrossRef PubMed
  • 作者单位:R. A. Ilyasov (1)
    A. V. Poskryakov (1)
    A. V. Petukhov (2)
    A. G. Nikolenko (1)

    1. Institute of Biochemistry and Genetics, Ufa Scientific Center, Russian Academy of Sciences, Ufa, Republic of Bashkortostan, 450054, Russia
    2. Department of Zoology, Perm State Humanitarian Pedagogical University, Perm, 614990, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Human Genetics
    Animal Genetics and Genomics
    Microbial Genetics and Genomics
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3369
文摘
The black honeybee Apis mellifera mellifera L. is today the only subspecies of honeybee which is suitable for commercial breeding in the climatic conditions of Northern Europe with long cold winters. The main problem of the black honeybee in Russia and European countries is the preservation of the indigenous gene pool purity, which is lost as a result of hybridization with subspecies, A. m. caucasica, A. m. carnica, A. m. carpatica, and A. m. armeniaca, introduced from southern regions. Genetic identification of the subspecies will reduce the extent of hybridization and provide the gene pool conservation of the black honeybee. Modern classification of the honeybee mitotypes is mainly based on the combined use of the DraI restriction endonuclease recognition site polymorphism and sequence polymorphism of the mtDNA COI–COII region. We performed a comparative analysis of the mtDNA COI–COII region sequence polymorphism in the honeybees of the evolutionary lineage M from Ural and West European populations of black honeybee A. m. mellifera and Spanish bee A. m. iberiensis. A new approach to the classification of the honeybee M mitotypes was suggested. Using this approach and on the basis of the seven most informative SNPs of the mtDNA COI–COII region, eight honeybee mitotype groups were identified. In addition, it is suggested that this approach will simplify the previously proposed complicated mitotype classification and will make it possible to assess the level of the mitotype diversity and to identify the mitotypes that are the most valuable for the honeybee breeding and rearing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700