Mechanical properties and crystallization of high-density polyethylene composites with mesostructured cellular silica foam
详细信息    查看全文
  • 作者:George Z. Papageorgiou (1)
    Aikaterini Palani (1)
    Dimitrios Gilliopoulos (2)
    Kostas S. Triantafyllidis (2)
    Dimitrios N. Bikiaris (1)
  • 关键词:High ; density polyethylene (HDPE) ; Mesostructured cellular foam (MCF) silica ; Mesocomposites ; Crystallization
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:113
  • 期:3
  • 页码:1651-1665
  • 全文大小:1326KB
  • 参考文献:1. Galli P, Vecellio G. Polyolefins: the most promising large-volume materials for the 21st century. J Polym Sci A. 2004;42:396-15. CrossRef
    2. Tjong SC. Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R. 2006;53:73-97. CrossRef
    3. Chrissafis K, Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta. 2011;523:1-4. CrossRef
    4. Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochim Acta. 2011;523:25-5. CrossRef
    5. Araujo EM, Barbosa R, Morais CRS, Soledade LEB, Souza AG, Vieira MQ. Effects of organoclays on the thermal processing of PE/Clay nanocomposites. J Thermal Anal Calorim. 2007;90:841-. CrossRef
    6. Dorigato A, Pegoretti A, Frache A. Thermal stability of high density polyethylene-fumed silica nanocomposites. J Therm Anal Calorim. 2012;109:863-3. CrossRef
    7. Lomakin SM, Dubnikova IL, Shchegolikhin AN, Zaikov GE, Kozlowski R, Kim GM, Michler GH. Thermal degradation and combustion behavior of the polyethylene/nanoclay nanocomposite prepared by melt intercalation. J Thermal Anal Calorim. 2008;94:719-6. CrossRef
    8. Bolbukh Y, Kuzema P, Tertykh V, Laguta I. Thermal degradation of polyethylene containing antioxidant and hydrophilic silica. J Thermal Anal Calorim. 2008;94:727-6. CrossRef
    9. Chrissafis K, Paraskevopoulos KM, Pavlidou E, Bikiaris D. Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta. 2009;485:65-1. CrossRef
    10. Zou Y, Feng Y, Wang L, Liu X. Processing and properties of MWNT/HDPE composites. Carbon. 2004;42:271-. CrossRef
    11. Chrissafis K, Paraskevopoulos KM, Tsiaoussis I, Bikiaris D. Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. J Appl Polym Sci. 2009;114:1606-8. CrossRef
    12. Swain SK, Isayev AI. Effect of ultrasound on HDPE/clay nanocomposites: rheology, structure and properties. Polymer. 2007;48:281-. CrossRef
    13. Lotti C, Isaac CS, Branciforti MC, Alves RMV, Liberman S, Bretas RES. Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. Eur Polym J. 2008;44:1346-7. CrossRef
    14. Pegoretti A, Dorigato A, Penati A. Tensile mechanical response of polyethylene–clay nanocomposites. Express Polym Lett. 2007;1:123-1. CrossRef
    15. Grigoriadou I, Paraskevopoulos KM, Chrissafis K, Pavlidou E, Stamkopoulos TG, Bikiaris D. Effect of different nanoparticles on HDPE UV stability. Polym Degrad Stab. 2011;96:151-3. CrossRef
    16. Cerrada ML, Pérez E, Louren?o JP, Campos JM, Ribeiro MR. Hybrid HDPE/MCM-41 nanocomposites: crystalline structure and viscoelastic behaviour. Micropor Mesopor Mater. 2010;130:215-3. CrossRef
    17. Campos JM, Ribeiro MR, Louren?o JP, Fernandes A. Ethylene polymerisation with zirconocene supported in Al-modified MCM-41: catalytic behaviour and polymer properties. J Mol Catal A. 2007;277:93-01. CrossRef
    18. Campos JM, Louren?o JP, Pérez E, Cerrada ML, Ribeiro MR. Self-reinforced hybrid polyethylene/MCM-41 nanocomposites: in situ polymerization and effect of MCM-41 content on rigidity. J Nanosci Nanotechnol. 2009;9:3966-4. CrossRef
    19. Bento A, Louren?o JP, Fernandes A, Ribeiro MR, Arranz-Andrés J, Lorenzo V, Cerrada ML. Gas permeability properties of decorated MCM-41/polyethylene hybrids prepared by in situ polymerization. J Membr Sci. 2012;415-16:702-1. CrossRef
    20. Park I, Peng HG, Gidley DW, Xue SQ, Pinnavaia TJ. Epoxy–silica mesocomposites with enhanced tensile properties and oxygen permeability. Chem Mater. 2006;18:650-. CrossRef
    21. Park I, Pinnavaia TJ. Mesocellular silica foam as an epoxy polymer reinforcing agent. Adv Funct Mater. 2007;17:2835-1. CrossRef
    22. Jiao J, Sun X, Pinnavaia TJ. Mesostructured silica for the reinforcement and toughening of rubbery and glassy epoxy polymers. Polymer. 2009;50:983-. CrossRef
    23. Karakoulia SA, Triantafyllidis KS, Lemonidou AA. Preparation and characterization of vanadia catalysts supported on non-porous, microporous and mesoporous silicates for oxidative dehydrogenation of propane (ODP). Micropor Mesopor Mater. 2008;110:157-6. CrossRef
    24. Schmidt-Winkel P, Lukens WW Jr, Zhao D, Yang P, Chmelka BF, Stucky GD. Mesocellular siliceous foams with uniformly sized cells and windows. J Am Chem Soc. 1999;121:254-. CrossRef
    25. Castrillo PD, Olmos D, Amador DR, González-Benito J. Real dispersion of isolated fumed silica nanoparticles in highly filled PMMA prepared by high energy ball milling. J Colloid Interface Sci. 2007;308:318-4. CrossRef
    26. Savin AV, Manevitch LI. Discrete breathers in a polyethylene chain. Phys Rev B. 2003;67:1443021-. CrossRef
    27. Frye CJ, Ward IM. The measurement of crystallite size in ultrahigh-modulus polyethylene. J Polym Sci B. 1982;20:1677-5.
    28. Lee SY, Park SY, Song HS. Effects of melt-extension and annealing on row-nucleated lamellar crystalline structure of HDPE films. J Appl Polym Sci. 2007;103:3326-3. CrossRef
    29. John B, Varughese KT, Oommen Z, Potschke P, Thomas S. Dynamic mechanical behavior of high density polyethylene/ethylene vinyl acetate copolymer blends: the effects of blend ratio, reactive compatibilization, and dynamic vulcanization. J Appl Polym Sci. 2003;87:2083-9. CrossRef
    30. Chen K, Wilkie CA, Vyazovkin S. Nanoconfinement revealed in degradation and relaxation studies of two structurally different polystyrene–clay systems. J Phys Chem B. 2007;111:12685-2. CrossRef
    31. Avrami MJ. Kinetics of phase change. I: general theory. J Chem Phys. 1939;7:1103-2. CrossRef
    32. Avrami MJ. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212-4. CrossRef
    33. Avrami MJ. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177-4. CrossRef
    34. Achilias DS, Papageorgiou GZ, Karayannidis GP. Isothermal and nonisothermal crystallization kinetics of poly(propylene terephthalate). J Polym Sci B. 2004;42:3775-6. CrossRef
    35. Di Lorenzo ML, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24:917-0. CrossRef
    36. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer. 1978;19:1142-. CrossRef
    37. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150-. CrossRef
    38. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. I. Theory. J Non-Cryst Solids. 1993;162:1-2. CrossRef
    39. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. J Non-Cryst Solids. 1993;162:13-5. CrossRef
    40. Kim SH, Ahn SH, Hirai T. Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer. 2003;44:5625-4. CrossRef
    41. Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites. Thermochim Acta. 2005;427:117-8. CrossRef
    42. Papageorgiou GZ, Achilias DS, Nanaki S, Beslikas T, Bikiaris D. PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochim Acta. 2010;511:129-9. CrossRef
    43. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217-1. CrossRef
    44. Vyazovkin S, Sbirrazzuoli N. Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J Phys Chem B. 2003;107:882-. CrossRef
    45. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964-965;6:183-5.
    46. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178-3. CrossRef
  • 作者单位:George Z. Papageorgiou (1)
    Aikaterini Palani (1)
    Dimitrios Gilliopoulos (2)
    Kostas S. Triantafyllidis (2)
    Dimitrios N. Bikiaris (1)

    1. Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Macedonia, Greece
    2. Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Macedonia, Greece
文摘
In this study, composites of high-density polyethylene (HDPE) with mesostructured cellular foam (MCF) silicas have been prepared by melt mixing and studied for the first time. Two different MCF silica analogues having different pore size were used, i.e., 12?nm (MCF-12) and 50?nm (MCF-50). The MCF content in the mesocomposites was 1, 2.5, 5, and 10?mass%. All HDPE/MCF-50 mesocomposites exhibited improved mechanical properties compared with neat HDPE, indicating that the mesocellular silica foam particles with the large mesopore size can act as efficient reinforcing agents. On the other hand, the MCF-12 silica with the smaller size mesopores induced inferior mechanical properties, mainly due to the poorer dispersion of the silica particles and the formation of large aggregates. The mesocellular silica foam particles also affected the thermal properties and the crystallization characteristics of HDPE. Crystallization of mesocomposites was faster than that of neat HDPE. Crystallization kinetics was analyzed with the Avrami equation for both isothermal and non-isothermal conditions. For isothermal crystallization, the Avrami exponent increased with increasing crystallization temperature from 2 to 3. In non-isothermal crystallization, the values of the Avrami exponent increased from 3 to 6.3 with decreasing cooling rate. Lower activation energy values of non-isothermal crystallization were calculated using the isoconversional method of Friedman, as well as using the Kissinger’s equation. Finally, the nucleation efficiency of the mesocellular silica foam particles was estimated from data associated with non-isothermal crystallization, according to the method of Dobreva.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700