Respiration in spiders (Araneae)
详细信息    查看全文
  • 作者:Anke Schmitz
  • 关键词:Metabolic rate ; Resting rate ; Factorial scope ; Lungs ; Tracheae
  • 刊名:Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:186
  • 期:4
  • 页码:403-415
  • 全文大小:2,868 KB
  • 参考文献:Anderson JF (1970) Metabolic rates in spiders. Comp Biochem Physiol 33:51–72PubMed
    Anderson JF (1974) Responses to starvation in the spiders Lycosa lenta (Hentz) und Filistata hibernalis (Hentz). Ecology 55:576–585
    Anderson JF (1994) Comparative energetics of comb-footed spiders (Araneae: Theridiidae). Comp Biochem Physiol 109A(1):181–189
    Anderson JF (1996) Metabolic rates of resting salticid and thomisid spiders. J Arachnol 24:129–134
    Anderson JF, Prestwich KN (1975) The fluid pressure pumps of spiders (Chelicerata, Araneae). Z Morph Tiere 81:257–277
    Anderson JF, Prestwich KN (1982) Respiratory gas exchange in spiders. Physiol Zool 55(1):72–90
    Anderson JF, Prestwich KN (1985) The physiology of exercise at and above maximal aerobic capacity in a theraphosid (tarantula) spider Brachypelma smithi. J Comp Physiol B 155:529–539
    Angersbach D (1978) Oxygen transport in the blood of the tarantula Eurypelma californicum: pO2 and pH during rest, activity and recovery. J comp Physiol 123:113–125
    Ballweber P, Markl J, Burmester T (2002) Complete hemocyanin subunit sequences of the hunting spider Cupiennius salei—recent hemocyanin remodeling in entelegyne spiders. J Biol Chem 277:14451–14457PubMed
    Berner RA, Vandenbrooks JM, Ward P (2007) Oyxgen and evolution. Science 316:557–558PubMed
    Bertkau P (1876) Über die Respiationsorgane der Araneen. Archiv für Naturgeschichte 38:208–233
    Blest AD (1976) The tracheal arrangement and the classification of linyphiid spiders. J Zool Lond 180:185–194
    Braun F (1931) Beiträge zur Biologie und Atmungsphysiologie der Argyroneta aquatica Cl. Zoolog Jahrb Syst 62:175–262
    Bromhall C (1987a) Spider heart-rates and locomotion. J Comp Physiol B 157:451–460
    Bromhall C (1987b) Spider tracheal systems. Tissue Cell 19(6):793–807PubMed
    Burmester T (2013) Evolution and adaptation of hemocyanin within spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 3–14
    Cady AB, Delaney KJ, Uetz GW (2011) Contrasting energetic costs of courtship signaling in two wolf spiders having divergent courtship behaviors. J Arachnol 39:161–165
    Canals M, Salazar MJ, Duran C, Figueroa D, Veloso C (2007) Respiratory refinements in the mygalomorph spider Grammostola rosea walckenaer 1837 (Araneae, Theraphosidae). J Arachnol 35:481–486
    Canals M, Figueroa D, Alfaro C, Kawamoto T, Torres-Contreras H, Sabat P, Veloso C (2011) Effects of diet and water supply on energy intake and water loss in a mygalomorph spider in a fluctuating environment of the central Andes. J Insect Physiol 57:1489–1494. doi:10.​1016/​j.​jinsphys.​2011.​07.​016 PubMed
    Canals M, Veloso C, Moreno L, Solis R (2015a) Low metabolic rates in primitive hunters and weaver spiders. Physiol Entomol 40:232–238. doi:10.​1111/​phen.​12108
    Canals M, Veloso C, Solis R (2015b) Adaptation of the spiders to the environment: the case of some Chilean species. Front Physiol. doi:10.​3389/​fphys.​2015.​00220 PubMed PubMedCentral
    Carrel JE (1987) Heart rate and physiological ecology. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 95–110
    Carrel JE, Heathcote RD (1976) Heart rate in spiders: influence of body size and foraging strategies. Science 193:148–150PubMed
    Crome W (1952/53) Die Respirations- und Circulationsorgane der Argyroneta aquatica Cl. (Araneaea). Wiss Zeitschr Humboldt Universit”t Berlin 3/4:53–83
    Culik BM, McQueen DJ (1985) Monitoring respiration and activity in the spider Geolycosa domifex (Hancock) using time-lapse televison and CO2-analysis. Can J Zool 63:843–846
    Edwards GA (1946) The influence of temperature upon the oxygen consumption of several arthropods. J Cell Comp Physiol 27:53–64
    Ellis CH (1944) The mechanism of extension in the legs of spiders. Biol Bull 86:41–50
    Figueroa DP, Sabat P, Torres-Contreras H, Veloso C, Canals M (2010) Participation of book lungs in evaporative water loss in Paraphysa parvula, a migalomorph spider from Chilean Andes. J Insect Physiol 56:731–735. doi:10.​1016/​j.​jinsphys.​2010.​01.​001 PubMed
    Fincke T, Paul R (1989) Book lung function in arachnids III. The function and control of the spiracles. J Comp Physiol B 159:433–441
    Foelix RF (1992) Biologie der Spinnen, Second edn. Georg Thieme Verlag, New York
    Ford MJ (1977a) Energy costs of the predation strategy of the web-spinning spider Lethyphantes zimmermanni Bertkau (Linyphiidae). Oecologica 28:341–349
    Ford MJ (1977b) Metabolic costs of the predation strategy of the spider Pardosa amentata (Clerck) (Lycosidae). Oecologica 28:333–340
    Forster RR (1980) Evolution of the tarsal organ, the respiratory system and the female genitalia in spiders. Int Congr Arachnol 8:269–284
    Greenstone MH, Bennett AF (1980) Foraging strategy and metabolic rates in spiders. Ecology 61(5):1255–1259
    Haller B (1912) Über die Atmungsorgane der Arachnoiden. Ein Beitrag zur Stammesgeschichte dieser Tiere Arch f Mikrosk Anat 79:1–58
    Hemmingsen AM (1960) Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep Steno Mem Hosp 9:1–110
    Hsia CCW, Schmitz A, Lambertz M, Perry SF, Maina JN (2013) Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 3:849–915PubMed PubMedCentral
    Humphreys WF (1977) Respiration studies on Geolycosa godeffroyi (Aranea: Lycosidae) and their relationship to field estimates of metabolic heat loss. Comp Biochem Physiol 57A:255–263
    Jensen K, Mayntz D, Wang T, Simpson SJ, Overgaard J (2010) Metabolic consequences of feeding and fasting on nutritionally different diets in the wolf spider Pardosa prativaga. J Insect Physiol 56:1095–1100. doi:10.​1016/​j.​jinsphys.​2010.​03.​001 PubMed
    Kästner A (1929) Bau und Funktion der Fächertracheen einiger Spinnen. Z f Morphol d Tiere 13:463–558
    Kasumovic MM, Seebacher F (2013) The active metabolic rate predicts a male spider’s proximity to females and expected fitness. Biol Lett 9:1–4. doi:10.​1098/​rsbl.​2012.​1164
    Kawamoto TH, Machado FDA, Kaneto GE, Japyassu HF (2011) Resting metabolic rates of two orbweb spiders: a first approach to evolutionary success of ecribellate spiders. J Insect Physiol 57:427–432. doi:10.​1016/​j.​jinsphys.​2011.​01.​001 PubMed
    Kotiaho J (1998) Sexual differences in metabolic rates of spiders. J Arachnol 26:401–404
    Lamy E (1902) Les trachées des araignées. Ann Sci Natur Zool 15(8):149–280
    Levi HW (1967) Adaptations of respiratory systems of spiders. Evolution 21:571–583
    Levi HW (1976) On the evolution of tracheae in Arachnids. Bull Br Arachnol Soc 3(7):187–188
    Linzen B, Gallowitz P (1975) Enzyme activity patterns in muscles of the lycosid spider Cupiennius salei. J Comp Physiol 96:101–109
    Mangum CP (1985) Oxygen transport in invertebrates. Am J Physiol 248:505–514
    Markl J (1986) Evolution and function of structurally diverse subunits in the respiratory protein hemocyanin from Arthropods. Biol Bull 171:90–115
    Markl J, Decker H (1992) Molecular structure of the arthropod hemocyanins. Adv Comp Environ Physiol 13:325–376
    Markl J, Stöcker W, Runzler R, Precht E (1986) Immunological correspondence between the hemocyanin subunits of 86 arthropods: evolution of a multigene protein family. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin, pp 281–299
    McQueen DJ (1980) Active respiration rates for the burrowing wolf spider Geolycosa domifex (Hancock). Can J Zool 58:1066–1074PubMed
    McQueen DJ, Culik B (1981) Field and laboratory activity patterns in the burrowing wolf spider Geolycosa domifex (Hancock). Can J Zool 59:1263–1271
    McQueen DJ, Jensen IM, Dyer BS (1979) Resting and diel respiration rates for burrowing wolf spider Geolycosa domifex (Hancock). Can J Zool 57:1922–1933
    Millidge AF (1986) A revision of the tracheal structures of the Linyphiidae (Araneae). Bull Br Arachnol Soc 7(2):57–61
    Miyashita K (1969) Effects of locomotory activity, temperature and hunger on the respiratory rate of Lycosa t-insignita Boes et. Str. (Araneae: Lycosidae). Appl Ent Zool 4:105–113
    Moore SJ (1976) Some spider organs as seen by the scanning electron microscope, with special reference to the book-lung. Bull Br Arachnol Soc 3(7):177–187
    Nakamura K (1987) Hunger and starvation. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 287–295
    Nespolo RF, Correa L, Perez-Apablaza CX, Cortes P, Bartheld JL (2011) Energy metabolism and the postprandial response of the Chilean tarantulas, Euathlus truculentus (Araneae: Theraphosidae). Comp Biochem Physiol A-Mol Integr Physiol 159:379–382. doi:10.​1016/​j.​cbpa.​2011.​04.​003 PubMed
    Okuyama T (2015) Metabolic responses to predation risk in a jumping spider. J Zool 297:9–14. doi:10.​1111/​jzo.​12251
    Opell BD (1979) Revision of the genera and tropical American species of the spider family Uloboridae. Bull Mus Comp Zool 148(10):443–549
    Opell BD (1987) The influence of web monitoring tactics on the tracheal systems of spiders in the family Uloboridae (Arachnida, Araneida). Zoomorphology 107:255–259
    Opell BD (1989) Centers of mass and weight distribution in spiders of the family Uloboridae. J Morphol 202:351–359
    Opell BD (1990) The relationships of book lung and tracheal systems in the spider family Uloboridae. J Morphol 206:211–216
    Opell BD (1998) The respiratory complementary of spider book lung and tracheal systems. J Morphol 236:57–64
    Opell BD, Konur DC (1992) Influence of web-monitoring tactics on the density of mitochondria in leg muscles of the spider family Uloboridae. J Morphol 213:341–347
    Paul R (1986) Gas exchange and gas transport in the tarantula Eurypelma californicum—an overview. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin, pp 321–326
    Paul RJ (1991) Oxygen transport from book lungs to tissues—environmental physiology and metabolism in arachnids. Verh Dt Zool Ges 84:9–14
    Paul RJ (1992) Gas exchange, circulation, and energy metabolism in arachnids. In: Wood SC, Weber RE, Hargens AR, Millard RW (eds) Physiological adaptations in vertebrates. Marcel Dekker, New York, pp 169–197
    Paul R, Fincke T (1989) Book lung function in arachnids II. Carbon dioxide and its relations to respiratory surface, water loss and heart frequency. J Comp Physiol 159:419–432
    Paul R, Fincke T, Linzen B (1987) Respiration in the tarantula Eurypelma californicum: evidence for diffusion lungs. J Comp Physiol B 157:209–217
    Paul R, Fincke T, Linzen B (1989a) Book lung function in arachnids. I. Oxygen uptake and respiratory quotient during rest, activity and recovery—relations to gas transport in the haemolymph. J Comp Physiol B 159:409–418
    Paul R, Tiling K, Focke P, Linzen B (1989b) Heart and circulatory functions in a spider (Eurypelma californicum): the effects of hydraulic force generation. J Comp Physiol B 158:673–687
    Paul RJ, Bergner B, Pfeffer-Seidl A, Decker H, Efinger R, Storz H (1994a) Gas transport in the haemolymph of Arachnids I. Oxygen transport and the physiological role of haemocyanins. J exp Biol 188:25–46PubMed
    Paul RJ, Bihlmayer S, Colmorgen M, Zahler S (1994b) The open circulatory system of spiders (Eurypelma californicum, Pholcus phalangioides): a survey of functional morphology and physiology. Physiol Zool 67(6):1360–1382
    Pedersen O, Colmer TD (2012) Physical gills prevent drowning of many wetland insects, spiders and plants. J Exp Biol 215:705–709. doi:10.​1242/​jeb.​065128 PubMed
    Peters HM (1987) Fine structure and function of capture threads. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 187–202
    Prestwich KN (1983a) Anaerobic metabolism in spiders. Physiol Zool 56(1):112–121
    Prestwich KN (1983b) The roles of aerobic and anaerobic metabolism in active spiders. Physiol Zool 56(1):122–132
    Prestwich KN (1988a) The constraints on maximal activity in spiders I. Evidence against the fluid insufficiency hypothesis. J Comp Physiol 158:437–447
    Prestwich KN (1988b) The constraints on maximal activity in spiders. II. Limitations imposed by phosphagen depletion and anaerobic metabolism. J Comp Physiol B 158:449–456
    Purcell F (1895) Note on the development of the lungs, entapophyses, tracheae and genital ducts in spiders. Zool Anz 486:1–5
    Purcell WF (1909) Development and origin of the respiratory organs in Araneae. Quart J Microsc Sci 54(1):1–110
    Purcell WF (1910) The phylogeny of tracheae in Araneae. Quart J Microsc Sci 54(4):519–563
    Ramirez MJ (2000) Respiratory system morphology and the phylogeny of haplogyne spiders (Araneae, Araneomorphae). J Arachnol 28:149–157
    Rehm P, Pick C, Borner J, Markl J, Burmester T (2012) The diversity and evolution of chelicerate hemocyanins. BMC Evolut Biol 12:19. doi:10.​1186/​1471-2148/​12/​19
    Reisinger PWM, Focke P, Linzen B (1990) Lung morphology of the tarantula, Eurypelma californicum, Ausserer, 1871 (Araneae: Theraphosidae). Bull Br Arachnol Soc 8:165–170
    Reisinger PWM, Tutter I, Welsch U (1991) Fine structure of the gills of the horseshoe crabs Limulus polyphemus and tachypleus tridentatus and of the book lungs of the spider Eurypelma californicum. Zool Jb Anat 121:331–357
    Schmalhofer VR (2011) Impacts of temperature, hunger and reproductive condition on metabolic rates of flower-dwelling crab spiders (Araneae: Thomisidae). J Arachnol 39:41–52
    Schmitz A (2004) Metabolic rates during rest and activity in differently tracheated spiders (Arachnida, Araneae): Pardosa lugubris (Lycosidae) and Marpissa muscosa (Salticidae). J Comp Physiol B 174:519–526PubMed
    Schmitz A (2005) Spiders on a treadmill: influence of running activity on metabolic rates in Pardosa lugubris (Araneae, Lycosidae) and Marpissa muscosa (Araneae, Salticidae). J Exp Biol 208:1401–1411PubMed
    Schmitz A (2013) Tracheae in spiders: respiratory organs for special functions. In: Nentwig W (ed) Spider ecophysiology. Springer, New York, pp 29–39
    Schmitz A (2015) Functional morphology of the respiratory organs in the cellar spider Pholcus phalangioides (Arachnida, Araneae, Pholcidae). J Comp Physiol B 185:637–646PubMed
    Schmitz A, Paul RJ (2003) Probing of hemocyanin function in araneomorph spiders. XIIIth international conference Inv Diox Bind Prot Mainz, vol 96
    Schmitz A, Perry SF (2000) Respiratory system of arachnids I: Morphology of the respiratory system of Salticus scenicus and Euophrys lanigera (Arachnida, Araneae, Salticidae). Arthropod Struct Dev 29:3–12PubMed
    Schmitz A, Perry SF (2001) Bimodal breathing in jumping spiders: morphometric partitioning of lungs and tracheae in Salticus scenicus (Arachnida, Araneae, Salticidae). J Exp Biol 204:4321–4334PubMed
    Schmitz A, Perry SF (2002) Respiratory organs in wolf spiders: morphometric analysis of lungs and tracheae in Pardosa lugubris (L.) (Arachnida, Araneae, Lycosidae). Arthropod Struct Dev 31:217–230PubMed
    Seymour RS, Hetz SK (2011) The diving bell and the spider: the physical gill of Argyroneta aquatica. J Exp Biol 214:2175–2181. doi:10.​1242/​jeb.​056093 PubMed
    Seymour RS, Vinegar A (1973) Thermal relations, water loss and oxygen consumption of a North American tarantula. Comp Biochem Physiol 44A:83–96
    Shillington C (2005) Inter-sexual differences in resting metabolic rates in the Texas tarantula, Aphonopelma anax. Comp Biochem Physiol A-Mol Integr Physiol 142:439–445PubMed
    Shillington C, Peterson CC (2002) Energy metabolism of male and female tarantulas (Aphonopelma anax) during locomotion. J Exp Biol 205:2909–2914PubMed
    Simmons OL (1894) Development of the lungs of spiders. Am J Sci Art 48:119–129
    Stoltz JA, Andrade MCB, Kasumovic MM (2012) Developmental plasticity in metabolic rates reinforces morphological plasticity in response to social cues of sexual selection. J Insect Physiol 58:985–990. doi:10.​1016/​j.​jinsphys.​2012.​05.​002 PubMed
    Strazny F, Perry SF (1984) Morphometric diffusing capacity and functional anatomy of the book lungs in the spider Tegenaria spp. (Agelenidae). J Morphol 182:339–354
    Strazny F, Perry SF (1987) Respiratory system: structure and function. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 78–94
    Tanaka K, Itô Y (1982) Decrease in respiratory rate in a wolf spider, Pardosa astrigera (L. Koch), under starvation Res. Popul Ecol 24:360–374
    Tanaka K, Ito Y, Saito T (1985) Reduced respiratory quotient by starvation in a wolf spider, Pardosa astrigera (L. Koch). Comp Biochem Physiol A-Mol Integr Physiol 80:415–418
    van Holde KE, Miller KI (1995) Hemocyanins. Adv Protein Chem 47:1–81PubMed
    Venner S, Bel-Venner M-C, Pasquet A, Leborgne R (2003) Body-mass-dependent cost of web-building behavior in an orb weaving spider, Zygiella x-notata. Naturwissenschaften 90:269–272PubMed
    Walker SE, Irwin JT (2006) Sexual dimorphism in the metabolic rate of two species of wolf spider (Araneae, Lycosidae). J Arachnol 34:368–373
    Watson PJ, Lighton JRB (1994) Sexual selection and the energetics of copulatory courtship in the Sierra dome spider, Linyphia litigiosa. Anim Behav 48:615–626
    Wirkner CS, Huckstorf K (2013) The circulatory system of spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 15–27
  • 作者单位:Anke Schmitz (1)

    1. Institute for Zoology, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Biomedicine
    Human Physiology
    Zoology
    Animal Physiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-136X
文摘
Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700