Functional MRI and CT biomarkers in oncology
详细信息    查看全文
  • 作者:J. M. Winfield (1) (2)
    G. S. Payne (1)
    N. M. deSouza (1)

    1. CRUK Imaging Centre at the Institute of Cancer Research
    ; Institute of Cancer Research and Royal Marsden NHS Foundation Trust ; Sutton ; UK
    2. MRI Unit
    ; Institute of Cancer Research and Royal Marsden Hospital ; Downs Road ; Sutton ; SM2 5PT ; UK
  • 关键词:MRI ; CT ; Biomarker ; Oncology
  • 刊名:European Journal of Nuclear Medicine and Molecular Imaging
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:42
  • 期:4
  • 页码:562-578
  • 全文大小:5,771 KB
  • 参考文献:1. Charles-Edwards, EM, Souza, NM (2006) Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 6: pp. 135-143
    2. Patterson, DM, Padhani, AR, Collins, DJ (2008) Technology insight: water diffusion MRI 鈥?a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol 5: pp. 220-233
    3. LeBihan, D, Turner, R, Moonen, CT, Pekar, J (1991) Imaging of diffusion and microcirculation with gradient sensitization: design, strategy and significance. J Magn Reson Imaging 1: pp. 7-28
    4. Sinkus, R, Beers, BE, Vilgrain, V, Souza, N, Waterton, JC (2012) Apparent diffusion coefficient from magnetic resonance imaging as a biomarker in oncology drug development. Eur J Cancer 48: pp. 425-431
    5. Heijmen, L, Verstappen, MC, Voert, EE, Punt, CJ, Oyen, WJ, Geus-Oei, L-F (2012) Tumour response prediction by diffusion-weighted MR imaging: ready for clinical use?. Crit Rev Oncol Hematol 83: pp. 194-207
    6. Padhani, AR, Lu, G, Koh, DM, Chenevert, TL, Thoeny, HC, Takahara, T (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11: pp. 102-125
    7. Heijmen, L, Voert, EE, Nagtegaal, ID, Span, P, Bussink, J, Punt, CJ (2013) Diffusion-weighted MR imaging in liver metastases of colorectal cancer: reproducibility and biological validation. Eur Radiol 23: pp. 748-756
    8. Kyriazi, S, Collins, DJ, Messiou, C, Pennert, K, Davidson, RL, Giles, SL (2011) Metastatic ovarian and primary peritoneal cancer: assessing chemotherapy response with diffusion-weighted MR imaging 鈥?value of histogram analysis of apparent diffusion coefficients. Radiology 261: pp. 182-192
    9. Koh, D-M, Blackledge, M, Collins, DJ, Padhani, AR, Wallace, T, Wilton, B (2009) Reproducibility and changes in the apparent diffusion coefficient of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial. Eur Radiol 19: pp. 2728-2738
    10. Donati, OF, Chong, D, Nanz, D, Boss, A, Froehlich, JM, Andres, E (2014) Diffusion-weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients. Radiology 270: pp. 454-463
    11. Sasaki, M, Yamada, K, Watanabe, Y, Matsui, M, Ida, M, Fujiwara, S (2008) Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. Radiology 249: pp. 624-630
    12. Sugahara, T, Korogi, Y, Kochi, M, Ikushima, I, Shigematu, Y, Hirai, T (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9: pp. 53-60
    13. Muraoka, N, Uematsu, H, Kimura, H, Imamura, Y, Fujiwara, Y, Murakami, M (2008) Apparent diffusion coefficient in pancreatic cancer: characterization and histopathological correlations. J Magn Reson Imaging 27: pp. 1302-1308
    14. Cobelli, F, Giganti, F, Orsenigo, E, Cellina, M, Esposito, A, Agostini, G (2013) Apparent diffusion coefficient modifications in assessing gastro-oesophageal cancer response to neoadjuvant treatment: comparison with tumour regression grade at histology. Eur Radiol 23: pp. 2165-2174
    15. Haradome, H, Grazioli, L, Morone, M, Gambarini, S, Kwee, TC, Takahara, T (2012) T2-weighted and diffusion-weighted MRI for discriminating benign from malignant focal liver lesions: diagnostic abilities of single versus combined interpretations. J Magn Reson Imaging 35: pp. 1388-1396
    16. Cieszanowski, A, Anysz-Grodzicka, A, Szeszkowski, W, Kaczynski, B, Maj, E, Gornicka, B (2012) Characterization of focal liver lesions using quantitative techniques: comparison of apparent diffusion coefficient values and T2 relaxation times. Eur Radiol 22: pp. 2514-2524
    17. Wu, LM, Xu, JR, Hua, J, Gu, HY, Chen, J, Haacke, EM (2013) Can diffusion-weighted imaging be used as a reliable sequence in the detection of malignant pulmonary nodules and masses?. Magn Reson Imaging 31: pp. 235-246
    18. Razek, AA, Farouk, A, Mousa, A, Nabil, N (2011) Role of diffusion-weighted magnetic resonance imaging in characterization of renal tumors. J Comput Assist Tomogr 35: pp. 332-336
    19. Ei Khouli, RH, Jacobs, MA, Mezban, SD, Huang, P, Kamel, IR, Macura, KJ (2010) Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging. Radiology 256: pp. 64-73
    20. Mazaheri, Y, Shukla-Dave, A, Hricak, H, Fine, SW, Zhang, J, Inurrigarro, G (2008) Prostate cancer: identification with combined diffusion weighted MR imaging and 3D 1H MR spectroscopic imaging 鈥?correlation with pathologic findings. Radiology 246: pp. 480-488
    21. Charles-Edwards, EM, Messiou, C, Morgan, VA, Silva, SS, McWhinney, NA, Katesmark, M (2008) Diffusion-weighted imaging in cervical cancer with an endovaginal technique: potential value for improving tumor detection in stage Ia and Ib1 disease. Radiology 249: pp. 541-550
    22. Souza, NM, Riches, SF, Vanas, NJ, Morgan, VA, Ashley, SA, Fisher, C (2008) Diffusion-weighted magnetic resonance imaging: a potential non-invasive marker of tumour aggressiveness in localized prostate cancer. Clin Radiol 63: pp. 774-782
    23. Goyal, A, Sharma, R, Bhalla, AS, Gamanagatti, S, Seth, A, Iyer, VK (2012) Diffusion-weighted MRI in renal cell carcinoma: a surrogate marker for predicting nuclear grade and histological subtype. Acta Radiol 53: pp. 349-358
    24. Payne, GS, Schmidt, M, Morgan, VA, Giles, S, Bridges, J, Ind, T (2010) Evaluation of magnetic resonance diffusion and spectroscopy measurements as predictive biomarkers in stage 1 cervical cancer. Gynecol Oncol 116: pp. 246-252
    25. Zhang, Y, Chen, JY, Xie, CM, Mo, YX, Liu, XW, Liu, Y (2011) Diffusion-weighted magnetic resonance imaging for prediction of response of advanced cervical cancer to chemoradiation. J Comput Assist Tomogr 35: pp. 102-107
    26. Wybranski, C, Zeile, M, L枚wenthal, D, Fischbach, F, Pech, M, R枚hl, FW (2011) Value of diffusion weighted MR imaging as an early surrogate parameter for evaluation of tumor response to high-dose-rate brachytherapy of colorectal liver metastases. Radiat Oncol 6: pp. 43
    27. Elmi, A, Hedgire, SS, Covarrubias, D, Abtahi, SM, Hahn, PF, Harisinghani, M (2013) Apparent diffusion coefficient as a non-invasive predictor of treatment response and recurrence in locally advanced rectal cancer. Clin Radiol 68: pp. e524-e531
    28. Nakamura, K, Imafuku, N, Nishida, T, Niwa, I, Joja, I, Hongo, A (2012) Measurement of the minimum apparent diffusion coefficient (ADCmin) of the primary tumor and CA125 are predictive of disease recurrence for patients with endometrial cancer. Gynecol Oncol 124: pp. 335-339
    29. Park, SY, Kim, CK, Park, BK, Lee, HM, Lee, KS (2011) Prediction of biochemical recurrence following radical prostatectomy in men with prostate cancer by diffusion-weighted magnetic resonance imaging: initial results. Eur Radiol 21: pp. 1111-1118
    30. Giles, SL, Messiou, C, Collins, DJ, Morgan, VA, Simpkin, CJ, West, S (2014) Whole-body diffusion-weighted MR imaging for assessment of treatment response in myeloma. Radiology 271: pp. 785-794
    31. Blackledge, MD, Collins, DJ, Tunariu, N, Orton, MR, Padhani, AR, Leach, MO (2014) Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusion-weighted MRI in patients with metastatic bone disease: a feasibility study. PLoS One 9: pp. e91779
    32. Malyarenko, D, Galban, CJ, Londy, FJ, Meyer, CR, Johnson, TD, Rehemtulla, A (2013) Multi-system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice-water phantom. J Magn Reson Imaging 37: pp. 1238-1246
    33. Wakefield JC, Kyriazi S, Winfield JM, Morgan VA, et al. Diffusion-weighted MRI of advanced ovarian cancer: evaluation of the variability of overall disease burden assessment methods. In: Proceedings of the International Society for Magnetic Resonance in Medicine, 2014; poster presentation no. 553.
    34. Waterton, JC, Pylkkanen, L (2012) Qualification of imaging biomarkers in oncology drug development. Eur J Cancer 48: pp. 409-415
    35. Wolff, SD, Balaban, RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10: pp. 135-144
    36. Wolff, SD, Balaban, RS (1994) Magnetization transfer imaging: practical aspects and clinical applications. Radiology 192: pp. 593-599
    37. Henkelman, RM, Stanisz, GJ, Graham, SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14: pp. 57-64
    38. Barker, GJ, Tofts, PS, Gass, A (1996) An interleaved sequence for accurate and reproducible clinical measurement of magnetization transfer ratio. Magn Reson Imaging 14: pp. 403-411
    39. Li, W, Zhang, Z, Nicolai, J, Yang, G-Y, Omary, RA, Larson, AC (2012) Magnetization transfer MRI in pancreatic cancer xenograft models. Magn Reson Med 68: pp. 1291-1297
    40. Lundbom, N (1992) Determination of magnetization transfer contrast in tissue: an MR imaging study of brain tumours. AJR Am J Roentgenol 159: pp. 1279-1285
    41. Kurki, T, Lundbom, N, Kalimo, H, Valtonen, S (1995) MR classification of brain gliomas: value of magnetization transfer and conventional imaging. Magn Reson Imaging 13: pp. 501-511
    42. Sormani, MP, Iannucci, G, Rocca, MA, Mastronardo, G, Cercignani, M, Miniucci, L (2000) Reproducibility of magnetization transfer ratio histogram-derived measures of the brain in healthy volunteers. AJNR Am J Neuroradiol 21: pp. 133-136
    43. Pui, MH (2000) Magnetization transfer analysis of brain tumour, infection, and infarction. J Magn Reson Imaging 12: pp. 395-399
    44. Bonini, RH, Zeotti, D, Saraiva, LA, Trad, CS, Filho, JM, Carrara, HH (2008) Magnetization transfer ratio as a predictor of malignancy in breast lesions: preliminary results. Magn Reson Med 59: pp. 1030-1034
    45. Takashima, S, Wang, J, Takayama, F, Momose, M, Kawakami, A, Saito, A (2001) Parotid masses: prediction of malignancy using magnetization transfer and MR imaging findings. AJR Am J Roentgenol 176: pp. 1577-1584
    46. Arnold, JF, Kotas, M, Pyzalski, RW, Pracht, ED, Flentje, M, Jakob, PM (2008) Potential of magnetization transfer MRI for target volume definition in patients with non-small-cell lung cancer. J Magn Reson Imaging 28: pp. 1417-1424
    47. Martens, MH, Lambregts, DM, Papanikolaou, N, Heijnen, LA, Riedl, RG, Zur Hausen, A (2014) Magnetization transfer ratio: a potential biomarker for the assessment of postradiation fibrosis in patients with rectal cancer. Invest Radiol 49: pp. 29-34
    48. Hajnal, JV, Baudouin, CJ, Oatridge, A, Young, IR, Bydder, GM (1992) Design and implementation of magnetization transfer pulse sequences for clinical use. J Comput Assist Tomogr 16: pp. 7-18
    49. Bottomley, PA, Hardy, CJ, Argersinger, RE, Allen-Moore, G (1987) A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic?. Med Phys 14: pp. 1-37
    50. O鈥機onnor, JP, Jackson, A, Parker, GJ, Roberts, C, Jayson, GC (2012) Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin Oncol 9: pp. 167-177
    51. Weidensteiner, C, Allegrini, PR, Sticker-Jantscheff, M, Romanet, V, Ferretti, S, McSheehy, PM (2014) Tumour T1 changes in vivo are highly predictive of response to chemotherapy and reflect the number of viable tumour cells 鈥?a preclinical study in mice. BMC Cancer 14: pp. 88
    52. Crawley, AP, Henkelman, RM (1988) A comparison of one-shot and recovery methods in T1 imaging. Magn Reson Med 7: pp. 23-34
    53. Fram, EK, Herfkens, RJ, Johnson, GA, Glover, GH, Karis, JP, Shimakawa, A (1987) Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn Reson Imaging 5: pp. 201-208
    54. Wang, HZ, Riederer, SJ, Lee, JN (1987) Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 5: pp. 399-416
    55. Leach, MO, Brindle, KM, Evelhoch, JL, Griffiths, JR, Horsman, MR, Jackson, A (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92: pp. 1599-1610
    56. Jamin, Y, Tucker, ER, Poon, E, Popov, S, Vaughan, L, Boult, JKR (2013) Evaluation of clinically translatable MR imaging biomarkers of therapeutic response in the TH-MYCN transgenic mouse model of neuroblastoma. Radiology 266: pp. 130-140
    57. McSheehy, PMJ, Weidensteiner, C, Cannet, C, Ferretti, S, Laurent, D, Ruetz, S (2010) Quantified tumor T1 is a generic early-response imaging biomarker for chemotherapy reflecting cell viability. Clin Cancer Res 16: pp. 212-225
    58. O鈥機onnor, JP, Carano, RA, Clamp, AR, Ross, J, Ho, CC, Jackson, A (2009) Quantifying antivascular effects of monoclonal antibodies to vascular endothelial growth factor: insights from imaging. Clin Cancer Res 15: pp. 6674-6682
    59. Jensen, KE, S酶rensen, PG, Thomsen, C, Christoffersen, P, Henriksen, O, Karle, H (1990) Magnetic resonance imaging of the bone marrow in patients with acute leukemia during and after chemotherapy. Acta Radiol 31: pp. 361-369
    60. Sourbron, SP, Buckley, DL (2013) Classic models for dynamic contrast-enhanced MRI. NMR Biomed 26: pp. 1004-1027
    61. Jackson, A, O'Connor, JP, Parker, GJ, Jayson, GC (2007) Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging. Clin Cancer Res 13: pp. 3449-3459
    62. Li, SP, Padhani, AR (2012) Tumor response assessments with diffusion and perfusion MRI. J Magn Reson Imaging 35: pp. 745-763
    63. Tofts, PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7: pp. 91-101
    64. Tofts, PS, Brix, G, Buckley, DL, Evelhoch, JL, Henderson, E, Knopp, MV (1999) Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10: pp. 223-232
    65. Lankester, KJ, Taylor, JN, Stirling, JJ, Boxall, J, D'Arcy, JA, Collins, DJ (2007) Dynamic MRI for imaging tumor microvasculature: comparison of susceptibility and relaxivity techniques in pelvic tumors. J Magn Reson Imaging 25: pp. 796-805
    66. Messiou, C, Orton, M, Ang, JE, Collins, DJ, Morgan, VA, Mears, D (2012) Advanced solid tumors treated with cediranib: comparison of dynamic contrast-enhanced MR imaging and CT as markers of vascular activity. Radiology 265: pp. 426-436
    67. O'Connor, JP, Jackson, A, Parker, GJ, Jayson, GC (2007) DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96: pp. 189-195
    68. Ciunci, CA, Perini, RF, Avadhani, AN, Kang, HC, Sun, W, Redlinger, M (2014) Phase 1 and pharmacodynamic trial of everolimus in combination with cetuximab in patients with advanced cancer. Cancer 120: pp. 77-85
    69. Yap, TA, Olmos, D, Brunetto, AT, Tunariu, N, Barriuso, J, Riisnaes, R (2011) Phase I trial of a selective c-MET inhibitor ARQ 197 incorporating proof of mechanism pharmacodynamic studies. J Clin Oncol 29: pp. 1271-1279
    70. Nathan, P, Zweifel, M, Padhani, AR, Koh, DM, Ng, M, Collins, DJ (2012) Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer. Clin Cancer Res 18: pp. 3428-3439
    71. Glade Bender, JL, Lee, A, Reid, JM, Baruchel, S, Roberts, T, Voss, SD (2013) Phase I pharmacokinetic and pharmacodynamic study of pazopanib in children with soft tissue sarcoma and other refractory solid tumors: a children's oncology group phase I consortium report. J Clin Oncol 31: pp. 3034-3043
    72. Hsu, CY, Shen, YC, Yu, CW, Hsu, C, Hu, FC, Hsu, CH (2011) Dynamic contrast-enhanced magnetic resonance imaging biomarkers predict survival and response in hepatocellular carcinoma patients treated with sorafenib and metronomic tegafur/uracil. J Hepatol 55: pp. 858-865
    73. Jarnagin, WR, Schwartz, LH, Gultekin, DH, G枚nen, M, Haviland, D, Shia, J (2009) Regional chemotherapy for unresectable primary liver cancer: results of a phase II clinical trial and assessment of DCE-MRI as a biomarker of survival. Ann Oncol 20: pp. 1589-1595
    74. Shih, TT, Hou, HA, Liu, CY, Chen, BB, Tang, JL, Chen, HY (2009) Bone marrow angiogenesis magnetic resonance imaging in patients with acute myeloid leukemia: peak enhancement ratio is an independent predictor for overall survival. Blood 113: pp. 3161-3167
    75. Pickles, MD, Manton, DJ, Lowry, M, Turnbull, LW (2009) Prognostic value of pre-treatment DCE-MRI parameters in predicting disease free and overall survival for breast cancer patients undergoing neoadjuvant chemotherapy. Eur J Radiol 71: pp. 498-505
    76. Flaherty, KT, Rosen, MA, Heitjan, DF, Gallagher, ML, Schwartz, B, Schnall, MD (2008) Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther 7: pp. 496-501
    77. Miles, KA, Lee, T-Y, Goh, V, Klotz, E, Cuenod, C, Bisdas, S (2012) Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol 22: pp. 1430-1441
    78. Ng, CS, Waterton, JC, Kundra, V, Brammer, D, Ravoori, M, Han, L (2012) Reproducibility and comparison of DCE-MRI and DCE-CT perfusion parameters in a rat tumor model. Technol Cancer Res Treat 11: pp. 279-288
    79. Driscoll, B, Keller, H, Jaffray, D, Coolens, C (2013) Development of a dynamic quality assurance testing protocol for multisite clinical trial DCE-CT accreditation. Med Phys 40: pp. 081906
    80. Mandeville, HC, Ng, QS, Daley, FM, Barber, PR, Pierce, G, Finch, J (2012) Operable non-small cell lung cancer: correlation of volumetric helical dynamic contrast-enhanced CT parameters with immunohistochemical markers of tumor hypoxia. Radiology 264: pp. 581-589
    81. Chen, Y, Zhang, J, Dai, J, Feng, X, Lu, H, Zhou, C (2012) Angiogenesis of renal cell carcinoma: perfusion CT findings. Abdom Imaging 35: pp. 622-628
    82. Goh, V, Glynne-Jones, R (2014) Perfusion CT imaging of colorectal cancer. Br J Radiol 87: pp. 20130811
    83. Lind, JS, Meijerink, MR, Dingemans, AM, Kuijk, C, Ollers, MC, Ruysscher, D (2010) Dynamic contrast-enhanced CT in patients treated with sorafenib and erlotinib for non-small cell lung cancer: a new method of monitoring treatment?. Eur Radiol 20: pp. 2890-2898
    84. Okada, H, Hontsu, S, Miura, S, Asakawa, I, Tamamoto, T, Katayama, E (2012) Changes of tumor size and tumor contrast enhancement during radiotherapy for non-small-cell lung cancer may be suggestive of treatment response. J Radiat Res 53: pp. 326-332
    85. Lim, WT, Ng, QS, Ivy, P, Leong, SS, Singh, O, Chowbay, B (2011) A phase II study of pazopanib in Asian patients with recurrent/metastatic nasopharyngeal carcinoma. Clin Cancer Res 17: pp. 5481-5489
    86. Tofts, PS, Collins, DJ (2011) Multicentre imaging measurements for oncology and in the brain. Br J Radiol 84: pp. S213-S226
    87. Padhani, A (2010) Science to practice: what does MR oxygenation imaging tell us about human breast cancer hypoxia?. Radiology 254: pp. 1-3
    88. McPhail, LD, Robinson, SP (2010) Intrinsic susceptibility MR imaging of chemically induced rat mammary tumors: relationship to histologic assessment of hypoxia and fibrosis. Radiology 254: pp. 110-118
    89. Baker, LC, Boult, JK, Jamin, Y, Gilmour, LD, Walker-Samuel, S, Burrell, JS (2013) Evaluation and immunohistochemical qualification of carbogen-induced 螖R2* as a noninvasive imaging biomarker of improved tumor oxygenation. Int J Radiat Oncol Biol Phys 87: pp. 160-167
    90. Jamin, Y, Glass, L, Hallsworth, A, George, R, Koh, D-M, Pearson, AD (2014) Intrinsic susceptibility MRI identifies tumors with ALK-F1174L mutation in genetically-engineered murine models of high-risk neuroblastoma. PLoS One 9: pp. e92886
    91. Rodrigues, LM, Howe, FA, Griffiths, JR, Robinson, SP (2004) Tumor R2* is a prognostic indicator of acute radiotherapeutic response in rodent tumors. J Magn Reson Imaging 19: pp. 482-488
    92. Bradley, DP, Tessier, JJ, Ashton, SE, Waterton, JC, Wilson, Z, Worthington, PL (2007) Correlation of MRI biomarkers with tumor necrosis in Hras5 tumor xenograft in athymic rats. Neoplasia 9: pp. 382-391
    93. Li, SP, Taylor, NJ, Makris, A, Ah-See, M-LW, Beresford, MJ, Stirling, JJ (2010) Primary human breast adenocarcinoma: imaging and histologic correlates of intrinsic susceptibility-weighted MR imaging before and during chemotherapy. Radiology 257: pp. 643-652
    94. Chopra, S, Foltz, WD, Milosevic, MF, Toi, A, Bristow, RG, Menard, C (2009) Comparing oxygen-sensitive MRI (BOLD R2*) with oxygen electrode measurements: a pilot study in men with prostate cancer. Int J Radiat Biol 85: pp. 805-813
    95. Jhaveri, KS, Cleary, SP, Fischer, S, Haider, MA, Pargoankar, V, Khalidi, K (2013) Blood oxygen level-dependent liver MRI: can It predict microvascular invasion in HCC?. J Magn Reson Imaging 37: pp. 692-699
    96. Dennie, J, Mandeville, JB, Boxerman, JL, Packard, SD, Rosen, BR, Weisskoff, RM (1998) NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 40: pp. 793-799
    97. Tropres, I, Grimault, S, Vaeth, A, Grillon, E, Julien, C, Payen, J-F (2001) Vessel size imaging. Magn Reson Med 45: pp. 397-408
    98. Kiselev, VG, Strecker, R, Ziyeh, S, Hennig, J (2005) Vessel size imaging in humans. Magn Reson Med 53: pp. 553-563
    99. Schmainda, KM, Rand, SD, Joseph, AM, Lund, R, Ward, BD, Pathak, AP (2004) Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol 25: pp. 1524-1532
    100. Batchelor, TT, Sorensen, AG, Tomaso, E, Zhang, W-T, Duda, DG, Cohen, KS (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11: pp. 83-95
    101. Pannetier, N, Lemasson, B, Christen, T, Tachrount, M, Tropres, I, Farion, R (2012) Vessel size index measurements in a rat model of glioma: comparison of the dynamic (Gd) and steady-state (iron-oxide) susceptibility contrast MRI approaches. NMR Biomed 25: pp. 218-226
    102. Valable, S, Lemasson, B, Farion, R, Beaumont, M, Segebarth, C, Remy, C (2008) Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study. NMR Biomed 21: pp. 1043-1056
    103. Douma, K, Oostendorp, M, Slaaf, DW, Post, MJ, Backes, WH, Zandvoort, MA (2010) Evaluation of magnetic resonance vessel size imaging by two-photon laser scanning microscopy. Magn Reson Med 63: pp. 930-939
    104. Persigehl, T, Ring, J, Budny, T, Hahnenkamp, A, Stoeppeler, S, Schwartz, LH (2013) Vessel size imaging (VSI) by robust magnetic resonance (MR) relaxometry MR-VSI of solid tumours in correlation with immunohistology and intravital microscopy. Mol Imaging 12: pp. 1-11
    105. Kim, E, Cebulla, J, Ward, BD, Rhie, K, Zhang, J, Pathak, AP (2013) Assessing breast cancer angiogenesis in vivo: which susceptibility contrast MRI biomarkers are relevant?. Magn Reson Med 70: pp. 1106-1116
    106. Burrell, JS, Bradley, RS, Walker-Samuel, S, Jamin, Y, Baker, LC, Boult, JK (2012) MRI measurements of vessel caliber in tumour xenografts: comparison with vascular corrosion casting. Microvasc Res 84: pp. 323-329
    107. Lemasson, B, Christen, T, Tizon, X, Farion, R, Fondraz, N, Provent, P (2011) Assessment of multiparametric MRI in a human glioma model to monitor cytotoxic and anti-angiogenic drug effects. NMR Biomed 24: pp. 473-482
    108. Sampath, D, Oeh, J, Wyatt, SK, Cao, TC, Koeppen, H, Eastham-Anderson, J (2013) Multimodal microvascular imaging reveals that selective inhibition of class I PI3K is sufficient to induce an antivascular response. Neoplasia 15: pp. 694-711
    109. Walker-Samuel, S, Boult, JK, McPhail, LD, Box, G, Eccles, SA, Robinson, SP (2012) Non-invasive in vivo imaging of vessel calibre in orthotopic prostate tumour xenografts. Int J Cancer 130: pp. 1284-1293
    110. Gahramanov, S, Muldoon, LL, Varallyay, CG, Li, X, Kraemer, DF, Fu, R (2013) Pseudoprogression of glioblastoma after chemo- and radiation therapy: diagnosis by using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging with ferumoxytol versus gadoteriol and correlation with survival. Radiology 266: pp. 842-852
    111. Gambarota, G, Laarhoven, HW, Philippens, M, Lok, J, Kogel, A, Punt, CJ (2006) Assessment of absolute blood volume in carcinoma by USPIO contrast-enhanced MRI. Magn Reson Imaging 24: pp. 279-286
    112. Law, M, Yang, S, Wang, H, Babb, JS, Johnson, G, Cha, S (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24: pp. 1989-1998
    113. Barajas, RF, Chang, JS, Segal, MR, Parsa, AT, McDermott, MW, Berger, MS (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253: pp. 486-496
    114. Law, M, Young, RJ, Babb, JS, Peccerelli, N, Chheang, S, Gruber, ML (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247: pp. 490-498
    115. O'Connor, JP, Jayson, GC (2012) Do imaging biomarkers relate to outcome in patients treated with VEGF inhibitors?. Clin Cancer Res 18: pp. 6588-6598
    116. Desar, IM, Voert, EG, Hambrock, T, Asten, JJ, Spronsen, DJ, Mulders, PF (2011) Functional MRI techniques demonstrate early vascular changes in renal cell cancer patients treated with sunitinib: a pilot study. Cancer Imaging 11: pp. 259-265
    117. Ah-See, M-LW, Makris, A, Taylor, NJ, Harrison, M, Richman, PI, Burcombe, RJ (2008) Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 14: pp. 6580-6589
    118. Alonzi, R, Padhani, AR, Taylor, NJ, Collins, DJ, D'Arcy, JA, Stirling, JJ (2011) Antivascular effects of neoadjuvant androgen deprivation for prostate cancer: an in vivo human study using susceptibility and relaxivity dynamic MRI. Int J Radiat Oncol Biol Phys 80: pp. 721-727
    119. Graaf, RA (2007) In vivo NMR spectroscopy. Wiley, Chichester
    120. Provencher, SW (1993) Estimation of metabolite concentrations from localized NMR spectra. Magn Reson Med 30: pp. 672-679
    121. Provencher, SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14: pp. 260-264
    122. jMRUI. MRUI: Magnetic Resonance User Interface. http://www.mrui.uab.es/mrui/. Accessed 3 January 2015.
    123. Vanhamme, L, Boogaart, A, Huffel, S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129: pp. 35-43
    124. Naressi, A, Couturier, C, Devos, JM, Janssen, M, Mangeat, C, Beer, R (2001) Java-based graphical user interface for the MRUI quantitation package. MAGMA 12: pp. 141-152
    125. Warburg, O (1956) On the origin of cancer cells. Science 123: pp. 309-314
    126. Howe, FA, Barton, SJ, Cudlip, SA, Stubbs, M, Saunders, DE, Murphy, M (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49: pp. 223-232
    127. Nelson, SJ, Graves, E, Pirzkall, A, Li, X, Chan, AA, Vigneron, DB (2002) In vivo molecular imaging for planning radiation therapy of gliomas: an application of 1H MRSI. J Magn Reson Imaging 16: pp. 464-476
    128. Begley, JK, Redpath, TW, Bolan, PJ, Gilbert, FJ (2012) In vivo proton magnetic resonance spectroscopy of breast cancer: a review of the literature. Breast Cancer Res 14: pp. 207
    129. Kurhanewicz, J, Vigneron, D, Carroll, P, Coakley, F (2008) Multiparametric magnetic resonance imaging in prostate cancer: present and future. Curr Opinion Urol 18: pp. 71-77
    130. Griffin, JL, Shockcor, JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4: pp. 551-561
    131. Boren, J, Brindle, KM (2012) Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ 19: pp. 1561-1570
    132. Glaholm, J, Leach, MO, Collins, DJ, Mansi, J, Sharp, JC, Madden, A (1989) In-vivo 31P magnetic resonance spectroscopy for monitoring treatment response in breast cancer. Lancet 1: pp. 1326-1327
    133. Negendank W. Studies of human tumors by MRS: a review. NMR Biomed. 1992;5(5):303鈥?4.
    134. Arias-Mendoza, F, Payne, GS, Zakian, K, Stubbs, M, O'Connor, OA, Mojahed, H (2013) Noninvasive phosphorus magnetic resonance spectroscopic imaging predicts outcome to first-line chemotherapy in newly diagnosed patients with diffuse large B-cell lymphoma. Acad Radiol 20: pp. 1122-1129
    135. Moon, RB, Richards, JH (1973) Determination of intracellular pH by 31P magnetic resonance. J Biol Chem 248: pp. 7276-7278
    136. Graham, RA, Taylor, AH, Brown, TR (1994) A method for calculating the distribution of pH in tissues and a new source of pH error from the 31P-NMR spectrum. Am J Physiol 266: pp. R638-R645
    137. Stubbs, M, McSheehy, PM, Griffiths, JR, Bashford, CL (2000) Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6: pp. 15-19
    138. Sonveaux, P, V茅gran, F, Schroeder, T, Wergin, MC, Verrax, J, Rabbani, ZN (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118: pp. 3930-3942
    139. McSheehy, PM, Griffiths, JR (1989) 19F MRS studies of fluoropyrimidine chemotherapy. a review. NMR Biomed 2: pp. 133-141
    140. Mason, RP, Rodbumrung, W, Antich, PP (1996) Hexafluorobenzene: a sensitive 19F NMR indicator of tumor oxygenation. NMR Biomed 9: pp. 125-134
    141. Lee, CP, Payne, GS, Oregioni, A, Ruddle, R, Tan, S, Raynaud, FI (2009) A phase I study of the nitroimidazole hypoxia marker SR4554 using 19F magnetic resonance spectroscopy. Br J Cancer 101: pp. 1860-1868
    142. Nelson, SJ, Kurhanewicz, J, Vigneron, DB, Larson, PE, Harzstark, AL, Ferrone, M (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized 000[1-13C] pyruvate. Sci Transl Med 5: pp. 198ra108
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Nuclear Medicine
    Imaging and Radiology
    Orthopedics
    Cardiology
    Oncology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1619-7089
文摘
Imaging biomarkers derived from MRI or CT describe functional properties of tumours and normal tissues. They are finding increasing numbers of applications in diagnosis, monitoring of response to treatment and assessment of progression or recurrence. Imaging biomarkers also provide scope for assessment of heterogeneity within and between lesions. A wide variety of functional parameters have been investigated for use as biomarkers in oncology. Some imaging techniques are used routinely in clinical applications while others are currently restricted to clinical trials or preclinical studies. Apparent diffusion coefficient, magnetization transfer ratio and native T1 relaxation time provide information about structure and organization of tissues. Vascular properties may be described using parameters derived from dynamic contrast-enhanced MRI, dynamic contrast-enhanced CT, transverse relaxation rate (R2*), vessel size index and relative blood volume, while magnetic resonance spectroscopy may be used to probe the metabolic profile of tumours. This review describes the mechanisms of contrast underpinning each technique and the technical requirements for robust and reproducible imaging. The current status of each biomarker is described in terms of its validation, qualification and clinical applications, followed by a discussion of the current limitations and future perspectives.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700