Adsorption of hydrogen and methane on intrinsic and alkali metal cations-doped Zn2(NDC)2(diPyTz) metal–organic framework using GCMC simulations
详细信息    查看全文
  • 作者:Saeid Yeganegi ; Vahid Sokhanvaran
  • 关键词:Adsorption ; Metal–organic framework ; Doping ; GCMC simulations
  • 刊名:Adsorption
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:22
  • 期:2
  • 页码:277-285
  • 全文大小:1,425 KB
  • 参考文献:Babarao, R., Jiang, J.: Molecular screening of metal-organic frameworks for CO2 storage. Langmuir 24, 6270–6278 (2008)CrossRef
    Beatty, A.M.: Open-framework coordination complexes from hydrogen-bonded networks: toward host/guest complexes. Coord. Chem. Rev. 246, 131–143 (2003)CrossRef
    Bhatia, S.K., Myers, A.L.: Optimum conditions for adsorptive storage. Langmuir 22, 1688–1700 (2006)CrossRef
    Bushnell, J.E., Kemper, P.R., Bowers, M.T.: Na+/K+·(H2) 1,2 clusters: binding energies from theory and experiment. J. Phys. Chem. 98, 2044–2049 (1994)CrossRef
    Campaná, C., Mussard, B., Woo, T.K.: Electrostatic potential derived atomic charges for periodic systems using a modified error functional. J. Chem. Theory Comput. 5, 2866–2878 (2009)CrossRef
    Celzard, A., Fierro, V.: Preparing a suitable material designed for methane storage: a comprehensive report. Energy Fuels 19, 573–583 (2005)CrossRef
    Czaja, A.U., Trukhan, N., Müller, U.: Industrial applications of metal-organic frameworks. Chem. Soc. Rev. 38, 1284–1293 (2009)CrossRef
    Dincă, M., Long, J.R.: Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew. Chem. Int. Ed. Engl. 47, 6766–66779 (2008)CrossRef
    Dunne, J.A., Rao, M., Sircar, S., Gorte, R.J., Myers, A.L.: Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 zeolites. Langmuir 12, 5896–5904 (1996)CrossRef
    Dybtsev, D.N., Chun, H., Yoon, S.H., Kim, D., Kim, K.: Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. J. Am. Chem. Soc. 126, 32–33 (2004)CrossRef
    Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., Yaghi, O.M.: Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002)CrossRef
    Farha, O.K., Eryazici, I., Jeong, N.C., Hauser, B.G., Wilmer, C.E., Sarjeant, A., Snurr, R.Q., Nguyen, S.T., Yazaydın, A.O., Hupp, J.T.: Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012)CrossRef
    Frost, H., Düren, T., Snurr, R.Q.: Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. J. Phys. Chem. B 110, 9565–9570 (2006)CrossRef
    Frost, H., Snurr, R.Q.: Design requirements for metal-organic frameworks as hydrogen storage materials. J. Phys. Chem. C 111, 18794–18803 (2007)CrossRef
    Gomez, D.A., Toda, J., Sastre, G.: Screening of hypothetical metal-organic frameworks for H2 storage. Phys. Chem. Chem. Phys. 16, 19001–19010 (2014)CrossRef
    Goodbody, S.J., Watanabe, K., MacGowan, D., Walton, J.P.R.B., Quirke, N.: Molecular simulation of methane and butane in silicalite. J. Chem. Soc. Faraday Trans. 87, 1951–1958 (1991)CrossRef
    Han, S.S., Choi, S.H., Goddard III, W.A.: Improved H2 storage in zeolitic imidazolate frameworks using Li+, Na+, and K+ dopants, with an emphasis on delivery H2 uptake. J. Phys. Chem. C 115, 3507–3512 (2011)CrossRef
    Han, S.S., Choi, S.H., Goddard III, W.A.: Zeolitic imidazolate frameworks as H2 adsorbents: Ab initio based grand canonical monte carlo simulation. J. Phys. Chem. C 114, 12039–12047 (2010)CrossRef
    Han, S.S., Mendoza-Cortés, J.L., Goddard III, W.A.: Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks. Chem. Soc. Rev. 38, 1460–1476 (2009)CrossRef
    Hübner, O., Glöss, A., Fichtner, M., Klopper, W.: On the interaction of dihydrogen with aromatic systems. J. Phys. Chem. A 108, 3019–3023 (2004)CrossRef
    Janiak, C.: Engineering coordination polymers towards applications. Dalt. Trans. 14, 2781–2804 (2003)CrossRef
    Janiak, C., Vieth, J.K.: MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 34, 2366–2388 (2010)CrossRef
    Jung, D.H., Kim, D., Lee, T.B., Choi, S.B., Yoon, J.H., Kim, J., Choi, K., Choi, S.H.: Grand Canonical Monte Carlo simulation study on the catenation effect on hydrogen adsorption onto the interpenetrating metal-organic frameworks. J. Phys. Chem. B 110, 22987–22990 (2006)CrossRef
    Kaye, S.S., Dailly, A., Yaghi, O.M., Long, J.R.: Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 129, 14176–14177 (2007)CrossRef
    Kesanli, B., Cui, Y., Smith, M.R., Bittner, E.W., Bockrath, B.C., Lin, W.: Highly interpenetrated metal-organic frameworks for hydrogen storage. Angew. Chem. Int. Ed. 44, 72–75 (2005)CrossRef
    Keskin, S., Sholl, D.S.: Screening metal-organic framework materials for membrane-based methane/carbon dioxide separations. J. Phys. Chem. C 111, 14055–14059 (2007)CrossRef
    Kuppler, R.J., Timmons, D.J., Fang, Q.R., Li, J.R., Makal, T.A., Young, M.D., Yuan, D., Zhao, D., Zhuang, W., Zhou, H.C.: Potential applications of metal-organic frameworks. Coord. Chem. Rev. 253, 3042–3066 (2009)CrossRef
    Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)CrossRef
    Li, J.R., Kuppler, R.J., Zhou, H.C.: Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–14504 (2009)CrossRef
    Li, Y., Yang, R.T.: Hydrogen storage in low silica type X zeolites. J. Phys. Chem. B 110, 17175–17181 (2006)CrossRef
    Liu, B., Yang, Q., Xue, C., Zhong, C., Chen, B., Smit, B.: Enhanced adsorption selectivity of hydrogen/methane mixtures in metal-organic frameworks with interpenetration: a molecular simulation study. J. Phys. Chem. C 112, 9854–9860 (2008)CrossRef
    Meek, S.T., Greathouse, J.A., Allendorf, M.D.: Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv. Mater. 23, 249–267 (2011)CrossRef
    Mu, W., Liu, D., Zhong, C.: A computational study of the effect of doping metals on CO2/CH4 separation in metal-organic frameworks. Microporous Mesoporous Mater. 143, 66–72 (2011)CrossRef
    Mueller, T., Ceder, G.: A density functional theory study of hydrogen adsorption in MOF-5. J. Phys. Chem. B 109, 17974–17983 (2005)CrossRef
    Mulfort, K.L., Hupp, J.T.: Alkali metal cation effects on hydrogen uptake and binding in metal-organic frameworks. Inorg. Chem. 47, 7936–7938 (2008)CrossRef
    Mulfort, K.L., Wilson, T.M., Wasielewski, M.R., Hupp, J.T.: Framework reduction and alkali-metal doping of a triply catenating metal-organic framework enhances and then diminishes H2 uptake. Langmuir 25, 503–508 (2009)CrossRef
    Muris, M., Dupont-Pavlovsky, N., Bienfait, M., Zeppenfeld, P.: Where are the molecules adsorbed on single-walled nanotubes? Surf. Sci. 492, 67–74 (2001)CrossRef
    Park, K.S., Ni, Z., Côté, A.P., Choi, J.Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O’Keeffe, M., Yaghi, O.M.: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA Early Ed. 103, 10186–10191 (2006)CrossRef
    Quinn, D.F., MacDonald, J.A.: Natural gas storage. Carbon 30, 1097–1103 (1992)CrossRef
    Rappé, A.K., Casewit, C.J., Colwell, K.S., Goddard Iii, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)CrossRef
    Robin, A.Y., Fromm, K.M.: Coordination polymer networks with O- and N-donors: what they are, why and how they are made. Coord. Chem. Rev. 250, 2127–2157 (2006)CrossRef
    Rowsell, J.L.C., Yaghi, O.M.: Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006)CrossRef
    Rowsell, J.L.C., Yaghi, O.M.: Strategies for hydrogen storage in metal-organic frameworks. Angew. Chem. Int. Ed. 44, 4670–4679 (2005)CrossRef
    Schlapbach, L., Zuttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001)CrossRef
    Sculley, J., Yuan, D., Zhou, H.C.: The current status of hydrogen storage in metal-organic frameworks-updated. Energy Environ. Sci. 4, 2721–2735 (2011)CrossRef
    Spencer, E.C., Howard, J.A., McIntyre, G.J., Rowsell, J.L., Yaghi, O.M.: Determination of the hydrogen absorption sites in Zn4O (1,4-benzenedicarboxylate) by single crystal neutron diffraction. Chem. Commun. 3, 278–280 (2006)CrossRef
    Staudt, R., Herbst, A., Beutekamp, S., Harting, P.: Adsorption of pure gases and mixtures on porous solids up to high pressures. Adsorption 11, 379–384 (2005)CrossRef
    Stergiannakos, T., Tylianakis, E., Klontzas, E., Trikalitis, P.N., Froudakis, G.E.: Hydrogen storage in novel Li-doped corrole metal-organic frameworks. J. Phys. Chem. C 116, 8359–8363 (2012)CrossRef
    Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.: Hydrogen storage in metal-organic frameworks. Chem. Rev. 112, 782–835 (2012)CrossRef
    Sun, D., Ma, S., Ke, Y., Collins, D.J., Zhou, H.C.: An interweaving MOF with high hydrogen uptake. J. Am. Chem. Soc. 128, 3896–3897 (2006)CrossRef
    Vitillo, J.G., Damin, A., Zecchina, A., Ricchiardi, G.: Theoretical characterization of dihydrogen adducts with alkaline cations. J. Chem. Phys. 122, 114311–114320 (2005)CrossRef
    Wenzel, S.E., Fischer, M., Hoffmann, F., Fröba, M.: Highly porous metal-organic framework containing a novel organosilicon linker: a promising material for hydrogen storage. Inorg. Chem. 48, 6559–6565 (2009)CrossRef
    Wilmer, C.E., Leaf, M., Lee, C.Y., Farha, O.K., Hauser, B.G., Hupp, J.T., Snurr, R.Q.: Large-scale screening of hypothetical metal-organic frameworks. Nat. Chem. 4, 83–89 (2012)CrossRef
    Wu, D., Wang, C., Liu, B., Liu, D., Yang, Q., Zhong, C.: Large-scale computational screening of metal-organic frameworks for CH4/H2 separation. AIChE J. 58, 2078–2084 (2012)CrossRef
    Xiang, Z., Hu, Z., Yang, W., Cao, D.: Lithium doping on metal-organic frameworks for enhancing H2 storage. Int. J. Hydrog. Energy 37, 946–950 (2012)CrossRef
    Yaghi, O.M., Li, Q.: Reticular chemistry and metal-organic frameworks for clean energy. MRS Bull. 34, 682–690 (2009)CrossRef
    Yazaydin, A.O., Snurr, R.Q., Park, T.H., Koh, K., Liu, J., LeVan, M.D., Benin, A.I., Jakubczak, P., Lanuza, M., Galloway, D.B., Low, J.J., Willis, R.R.: Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198–18199 (2009)CrossRef
    Yeganegi, S., Sokhanvaran, V.: Ab initio study of hydrogen adsorption on Zn2(NDC)2(diPyTz) metal-organic framework decorated with alkali and alkaline earth metal cations. Int. J. Hydrog. Energy 39, 14008–14017 (2014)CrossRef
    Zhang, Y.J., Liu, T., Kanegawa, S., Sato, O.: Interconversion between a nonporous nanocluster and a microporous coordination polymer showing selective gas adsorption. J. Am. Chem. Soc. 132, 912–913 (2010)CrossRef
    Zhou, W.: Methane storage in porous metal-organic frameworks: current records and future perspectives. Chem. Rec. 10, 200–204 (2010)CrossRef
    Zubizarreta, L., Gomez, E.I., Arenillas, A., Ania, C.O., Parra, J.B., Pis, J.J.: H2 storage in carbon materials. Adsorption 14, 557–566 (2008)CrossRef
  • 作者单位:Saeid Yeganegi (1)
    Vahid Sokhanvaran (1)

    1. Department of Physical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Surfaces and Interfaces and Thin Films
    Industrial Chemistry and Chemical Engineering
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Netherlands
  • ISSN:1572-8757
文摘
In this study, the adsorption of hydrogen and methane on the Zn2(NDC)2(diPyTz) [(NDC = 2,6-naphthalenedicarboxylate, diPyTz = di-3,6-(4-pyridyl)-1,2,4,5-tetrazine)] metal–organic framework (MOF) and the effect of its doping with alkali metal cations (Li+, Na+, K+) were investigated using Grand Canonical Monte Carlo simulations. The results indicated that the triply catenating Zn2(NDC)2(diPyTz), possessing small pores preferentially adsorbed hydrogen. Doping of Zn2(NDC)2(diPyTz) with alkali metal cations enhanced the hydrogen adsorption on the MOF. However, this enhancement became weaker as the atomic number of metal cation increased. The simulation results showed that the hydrogen adsorption on the Li+-doped Zn2(NDC)2(diPyTz) was almost 2.35 times greater than that of the corresponding undoped MOF at low pressure and room temperature. This suggests that the doping of MOFs with alkali metal cations especially lithium is a desired strategy for hydrogen storage. Furthermore, the results revealed that the adsorption of hydrogen on the Zn2(NDC)2(diPyTz) was higher than that of methane at room temperature. Keywords Adsorption Metal–organic framework Doping GCMC simulations

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700