Emerging Trends in Heart Valve Engineering: Part I. Solutions for Future
详细信息    查看全文
  • 作者:Arash Kheradvar (1) (2)
    Elliott M. Groves (1) (2)
    Lakshmi P. Dasi (3)
    S. Hamed Alavi (1)
    Robert Tranquillo (4)
    K. Jane Grande-Allen (5)
    Craig A. Simmons (6) (7)
    Boyce Griffith (8) (9)
    Ahmad Falahatpisheh (1)
    Craig J. Goergen (10)
    Mohammad R. K. Mofrad (11)
    Frank Baaijens (12)
    Stephen H. Little (13)
    Suncica Canic (14)

    1. Department of Biomedical Engineering
    ; The Edwards Lifesciences Center for Advanced Cardiovascular Technology ; University of California ; Irvine ; 2410 Engineering Hall ; Irvine ; CA ; 92697-2730 ; USA
    2. Department of Internal Medicine
    ; Division of聽Cardiology ; University of California ; Irvine School of Medicine ; Irvine ; CA ; USA
    3. Department of Mechanical聽Engineering
    ; School of Biomedical Engineering ; Colorado State University ; Fort Collins ; CO ; USA
    4. Department of Biomedical Engineering
    ; University of Minnesota ; Minneapolis ; MN ; USA
    5. Department of Bioengineering
    ; Rice University ; Houston ; TX ; USA
    6. Department of Mechanical & Industrial Engineering
    ; University of Toronto ; Toronto ; ON ; Canada
    7. Institute of聽Biomaterials & Biomedical Engineering
    ; University of Toronto ; Toronto ; ON ; Canada
    8. Department of Mathematics
    ; Center for Interdisciplinary Applied Mathematics ; University of North Carolina at Chapel Hill ; Chapel Hill ; NC ; USA
    9. McAllister Heart Institute
    ; University of North Carolina聽at Chapel Hill School of Medicine ; Chapel Hill ; NC ; USA
    10. Weldon School of Biomedical Engineering
    ; Purdue University ; West Lafayette ; IN ; USA
    11. Department of Bioengineering and Mechanical Engineering
    ; University of聽California ; Berkeley ; Berkeley ; CA ; USA
    12. Department of Biomedical Engineering
    ; Eindhoven University of聽Technology ; Eindhoven ; The Netherlands
    13. Houston Methodist DeBakey Heart & Vascular Center
    ; Houston ; TX ; USA
    14. Department of Mathematics
    ; University of Houston ; Houston ; TX ; USA
  • 关键词:Heart valve engineering ; Tissue engineered heart valves ; Polymeric heart valves
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:43
  • 期:4
  • 页码:833-843
  • 全文大小:840 KB
  • 参考文献:1. Akutsu, T, Dreyer, B, Kolff, WJ (1959) Polyurethane artificial heart valves in animals. J. Appl. Physiol. 14: pp. 1045-1048
    2. Alavi, S. H. Towards development of hybrid engineered heart valves. PhD Thesis. 2014.
    3. Alavi, SH, Kheradvar, A (2012) Metal mesh scaffold for tissue engineering of membranes. Tissue Eng. Part C 18: pp. 293-301 CrossRef
    4. Alavi, SH, Liu, WF, Kheradvar, A (2013) Inflammatory response assessment of a hybrid tissue-engineered heart valve leaflet. Ann. Biomed. Eng. 41: pp. 316-326 CrossRef
    5. Ando, M, Takahashi, Y (2009) Ten-year experience with handmade trileaflet polytetrafluoroethylene valved conduit used for pulmonary reconstruction. J. Thorac. Cardiovasc. Surg. 137: pp. 124-131 CrossRef
    6. Balachandran, K, Konduri, S, Sucosky, P, Jo, H, Yoganathan, AP (2006) An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34: pp. 1655-1665 CrossRef
    7. Balachandran, K, Sucosky, P, Jo, H, Yoganathan, AP (2009) Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am. J. Physiol. 296: pp. H756-H764
    8. Balachandran, K, Sucosky, P, Jo, H, Yoganathan, AP (2010) Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am. J. Pathol. 177: pp. 49-57 CrossRef
    9. Benton, JA, DeForest, CA, Vivekanandan, V, Anseth, KS (2009) Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Eng. Part A 15: pp. 3221-3230 CrossRef
    10. Benton, JA, Fairbanks, BD, Anseth, KS (2009) Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels. Biomaterials 30: pp. 6593-6603 CrossRef
    11. Benton, JA, Kern, HB, Anseth, KS (2008) Substrate properties influence calcification in valvular interstitial cell culture. J. Heart Valve Dis. 17: pp. 689-699
    12. Bernacca, GM, Mackay, TG, Gulbransen, MJ, Donn, AW, Wheatley, DJ (1997) Polyurethane heart valve durability: effects of leaflet thickness and material. Int. J. Artif. Organs 20: pp. 327-331
    13. Bernacca, GM, Mackay, TG, Wilkinson, R, Wheatley, DJ (1995) Calcification and fatigue failure in a polyurethane heart-valve. Biomaterials 16: pp. 279-285 CrossRef
    14. Bernacca, GM, Mackay, TG, Wilkinson, R, Wheatley, DJ (1997) Polyurethane heart valves: fatigue failure, calcification, and polyurethane structure. J. Biomed. Mater. Res. 34: pp. 371-379 CrossRef
    15. Bernacca, GM, O鈥機onnor, B, Williams, DF, Wheatley, DJ (2002) Hydrodynamic function of polyurethane prosthetic heart valves: influences of young鈥檚 modulus and leaflet thickness. Biomaterials 23: pp. 45-50 CrossRef
    16. Bernacca, GM, Straub, I, Wheatley, DJ (2002) Mechanical and morphological study of biostable polyurethane heart valve leaflets explanted from sheep. J. Biomed. Mater. Res. 61: pp. 138-145 CrossRef
    17. Bezuidenhout, D., and P. Zilla. Flexible leaflet polymeric heart valves. In: Cardiovascular and Cardiac Therapeutic Devices, edited by F. Thomas. New York: Springer 2014, pp. 93鈥?30.
    18. Bouten, C, Dankers, P, Driessen-Mol, A, Pedron, S, Brizard, A, Baaijens, F (2011) Substrates for cardiovascular tissue engineering. Adv. Drug Deliv. Rev. 63: pp. 221-241 CrossRef
    19. Braunwal, NS, Morrow, AG (1965) A late evaluation of flexible teflon prostheses utilized for total aortic valve replacement鈥攑ostoperative clinical hemodynamic and pathological assessments. J. Thorac. Cardiovasc. Surg. 49: pp. 485-496
    20. Breuer, CK, Mettler, BA, Anthony, T, Sales, VL, Schoen, FJ, Mayer, JE (2004) Application of tissue-engineering principles toward the development of a semilunar heart valve substitute. Tissue Eng. 10: pp. 1725-1736 CrossRef
    21. Butcher, JT, Mahler, GJ, Hockaday, LA (2011) Aortic valve disease and treatment: the need for naturally engineered solutions. Adv. Drug Deliv. Rev. 63: pp. 242-268 CrossRef
    22. Butterfield, M, Wheatley, DJ, Williams, DF, Fisher, J (2001) A new design for polyurethane heart valves. J. Heart Valve Dis. 10: pp. 105-110
    23. Carapetis, JR, Steer, AC, Mulholland, EK, Weber, M (2005) The global burden of group a streptococcal diseases. Lancet. Infect. Dis. 5: pp. 685-694 CrossRef
    24. Chaffin, KA, Buckalew, AJ, Schley, JL, Chen, X, Jolly, M, Alkatout, JA, Miller, JP, Untereker, DF, Hillmyer, MA, Bates, FS (2012) Influence of water on the structure and properties of PDMS-containing multiblock polyurethanes. Macromolecules 45: pp. 9110-9120 CrossRef
    25. Chen, JH, Chen, WL, Sider, KL, Yip, CY, Simmons, CA (2011) {beta}-Catenin mediates mechanically regulated, transforming growth factor-{beta}1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler. Thromb. Vasc. Biol. 31: pp. 590-597 CrossRef
    26. Chen, W. L. K, K. L. Sider, C. A. Simmons. Matrix mechanical and biochemical regulation of mouse multipotent stromal cell (MSC) lineage specification. PhD Thesis, 2014.
    27. Chen, JH, Simmons, CA (2011) Cell鈥搈atrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circ. Res. 108: pp. 1510-1524 CrossRef
    28. Chen, JH, Yip, CY, Sone, ED, Simmons, CA (2009) Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. Am. J. Pathol. 174: pp. 1109-1119 CrossRef
    29. Clift, SE, Fisher, J (1996) Finite element stress analysis of a new design of synthetic leaflet heart valve. Proc. Inst. Mech. Eng. H 210: pp. 267-272 CrossRef
    30. Colas, A, Curtis, J Silicone biomaterials: History and chemistry. In: Rattner, BD, Hoffman, AS, Schoen, FJ, Lemons, JE eds. (2004) Biomaterials Science: An Introduction to Materials in Medicine. Elsevier, San Diego
    31. Coury, A, Slaikey, P, Cahalan, P, Stokes, K (1987) Medical applications of implantable polyurethanes: current issues. Progress Rubber Plast. Technol. 3: pp. 24-37
    32. Cox, JL, Ad, N, Myers, K, Gharib, M, Quijano, RC (2005) Tubular heart valves: a new tissue prosthesis design鈥損reclinical evaluation of the 3f aortic bioprosthesis. J. Thorac. Cardiovasc. Surg. 130: pp. 520-527 CrossRef
    33. Cushing, MC, Liao, JT, Jaeggli, MP, Anseth, KS (2007) Material-based regulation of the myofibroblast phenotype. Biomaterials 28: pp. 3378-3387 CrossRef
    34. Daebritz, SH, Fausten, B, Hermanns, B, Franke, A, Schroeder, J, Groetzner, J, Autschbach, R, Messmer, BJ, Sachweh, JS (2004) New flexible polymeric heart valve prostheses for the mitral and aortic positions. Heart Surgery Forum 7: pp. E525-E532 CrossRef
    35. Daebritz, SH, Fausten, B, Hermanns, B, Schroeder, J, Groetzner, J, Autschbach, R, Messmer, BJ, Sachweh, JS (2004) Introduction of a flexible polymeric heart valve prosthesis with special design for aortic position. Eur. J. Cardiothorac. Surg. 25: pp. 946-952 CrossRef
    36. Daebritz, SH, Sachweh, JS, Hermanns, B, Fausten, B, Franke, A, Groetzner, J, Klosterhalfen, B, Messmer, BJ (2003) Introduction of a flexible polymeric heart valve prosthesis with special design for mitral position. Circulation 108: pp. 134-139 CrossRef
    37. d鈥橝rcy, JL, Prendergast, BD, Chambers, JB, Ray, SG, Bridgewater, B (2011) Valvular heart disease: the next cardiac epidemic. Heart 97: pp. 91-93 CrossRef
    38. Dijkman, PE, Driessen-Mol, A, Frese, L, Hoerstrup, SP, Baaijens, FPT (2012) Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials 33: pp. 4545-4554 CrossRef
    39. Driessen-Mol, A, Emmert, MY, Dijkman, PE, Frese, L, Sanders, B, Weber, B, Cesarovic, N, Sidler, M, Leenders, J, Jenni, R, Gr眉nenfelder, J, Falk, V, Baaijens, FPT, Hoerstrup, SP (2014) Transcatheter implantation of homologous 鈥渙ff-the-shelf鈥?tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep. J. Am. Coll. Cardiol. 63: pp. 1320-1329 CrossRef
    40. Durst, CA, Cuchiara, MP, Mansfield, EG, West, JL, Grande-Allen, KJ (2011) Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves. Acta Biomater. 7: pp. 2467-2476 CrossRef
    41. Engler, AJ, Sen, S, Sweeney, HL, Discher, DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126: pp. 677-689 CrossRef
    42. Fung, YC (1993) Biomechanics: Mechanical properties of living tissues. Springer, Berlin CrossRef
    43. Ghanbari, H, Kidane, AG, Burriesci, G, Ramesh, B, Darbyshire, A, Seifalian, AM (2010) The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve. Acta Biomater. 6: pp. 4249-4260 CrossRef
    44. Ghista, DN, Reul, H (1977) Optimal prosthetic aortic leaflet valve鈥攄esign parametric and longevity analyses鈥攄evelopment of avcothane-51 leaflet valve based on optimum design analysis. J. Biomech. 10: pp. 313-324 CrossRef
    45. Gould, ST, Darling, NJ, Anseth, KS (2012) Small peptide functionalized thiol-ene hydrogels as culture substrates for understanding valvular interstitial cell activation and de novo tissue deposition. Acta Biomater. 8: pp. 3201-3209 CrossRef
    46. Gould, ST, Srigunapalan, S, Simmons, CA, Anseth, KS (2013) Hemodynamic and cellular response feedback in calcific aortic valve disease. Circ. Res. 113: pp. 186-197 CrossRef
    47. Grande-Allen, KJ, Calabro, A, Gupta, V, Wight, TN, Hascall, VC, Vesely, I (2004) Glycosaminoglycans and proteoglycans in normal mitral valve leaflets and chordae: association with regions of tensile and compressive loading. Glycobiology 14: pp. 621-633 CrossRef
    48. Gu, X, Masters, KS (2010) Regulation of valvular interstitial cell calcification by adhesive peptide sequences. J. Biomed. Mater. Res. 93: pp. 1620-1630
    49. Hilbert, SL, Ferrans, VJ, Tomita, Y, Eidbo, EE, Jones, M (1987) Evaluation of explanted polyurethane trileaflet cardiac-valve prostheses. J. Thorac. Cardiovasc. Surg. 94: pp. 419-429
    50. Hinton, RB, Yutzey, KE (2011) Heart valve structure and function in development and disease. Annu. Rev. Physiol. 73: pp. 29-46 CrossRef
    51. Hoerstrup, SP, Sodian, R, Daebritz, S, Wang, J, Bacha, EA, Martin, DP, Moran, AM, Guleserian, KJ, Sperling, JS, Kaushal, S, Vacanti, JP, Schoen, FJ, Mayer, JE (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102: pp. III-44-49 CrossRef
    52. James, SP, Oldinski, RK, Zhang, M, Schwartz, H Chapter 18: UHMWPE/hyaluronan microcomposite biomaterials. In: Kurtz, S eds. (2009) UHMWPE Handbook. Elsevier, Amsterdam
    53. Jansen, J, Reul, H (1992) A synthetic 3-leaflet valve. J. Med. Eng. Technol. 16: pp. 27-33 CrossRef
    54. Jansen, J, Willeke, S, Reiners, B, Harbott, P, Reul, H, Rau, G (1991) New j-3 flexible-leaflet polyurethane heart-valve prosthesis with improved hydrodynamic performance. Int. J. Artif. Organs 14: pp. 655-660
    55. Kidane, AG, Burriesci, G, Edirisinghe, M, Ghanbari, H, Bonhoeffer, P, Seifalian, AM (2009) A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomater. 5: pp. 2409-2417 CrossRef
    56. Kloxin, AM, Benton, JA, Anseth, KS (2010) In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31: pp. 1-8 CrossRef
    57. Krishnamurthy, G, Itoh, A, Swanson, JC, Bothe, W, Karlsson, M, Kuhl, E, Miller, DC, Ingels, NB (2009) Regional stiffening of the mitral valve anterior leaflet in the beating ovine heart. J. Biomech. 42: pp. 2697-2701 CrossRef
    58. Krishnamurthy, G, Itoh, A, Swanson, JC, Miller, DC, Ingels, NB (2010) Transient stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Heart Circ. Physiol. 298: pp. H2221-H2225 heart.00215.2010" target="_blank" title="It opens in new window">CrossRef
    59. Leat, ME, Fisher, J (1995) The influence of manufacturing methods on the function and performance of a synthetic leaflet heart valve. Proc. Inst. Mech. Eng. H 209: pp. 65-69 CrossRef
    60. Lee, HJ, Lee, J-S, Chansakul, T, Yu, C, Elisseeff, JH, Yu, SM (2006) Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel. Biomaterials 27: pp. 5268-5276 CrossRef
    61. Mackay, TG, Wheatley, DJ, Bernacca, GM, Fisher, AC, Hindle, CS (1996) New polyurethane heart valve prosthesis: design, manufacture and evaluation. Biomaterials 17: pp. 1857-1863 CrossRef
    62. Mann, BK, Gobin, AS, Tsai, AT, Schmedlen, RH, West, JL (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22: pp. 3045-3051 CrossRef
    63. Masters, KS, Shah, DN, Leinwand, LA, Anseth, KS (2005) Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials 26: pp. 2517-2525 CrossRef
    64. Masters, KS, Shah, DN, Walker, G, Leinwand, LA, Anseth, KS (2004) Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials. J. Biomed. Mater. Res. Part A 71A: pp. 172-180 CrossRef
    65. Mendelson, K, Schoen, F (2006) Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann. Biomed. Eng. 34: pp. 1799-1819 CrossRef
    66. Merryman, WD, Lukoff, HD, Long, RA, Engelmayr, GC, Hopkins, RA, Sacks, MS (2007) Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast. Cardiovasc. Pathol. 16: pp. 268-276 CrossRef
    67. Mewissen, MW (2009) Primary nitinol stenting for femoropopliteal disease. J. Endovasc. Ther. 16: pp. II63-II81 CrossRef
    68. Mohri, H, Hessel, EA, Nelson, RJ, Anderson, HN, Dillard, DH, Merendin, KA (1973) Design and durability test of silastic trileaflet aortic-valve prostheses. J. Thorac. Cardiovasc. Surg. 65: pp. 576-582
    69. Moraes, C, Likhitpanichkul, M, Lam, CJ, Beca, BM, Sun, Y, Simmons, CA (2013) Microdevice array-based identification of distinct mechanobiological response profiles in layer-specific valve interstitial cells. Integr. Biol. Quant. Biosci. Nano Macro 5: pp. 673-680
    70. Muller, WH, Warren, WD, Dammann, JF, Beckwith, JR, Wood, JE (1960) Surgical relief of aortic insufficiency by direct operation on the aortic valve. Circulation 21: pp. 587-597 CrossRef
    71. Nistal, F, Garciamartinez, V, Arbe, E, Fernandez, D, Artinano, E, Mazorra, F, Gallo, I (1990) Invivo experimental assessment of polytetrafluoroethylene trileaflet heart-valve prosthesis. J. Thorac. Cardiovasc. Surg. 99: pp. 1074-1081
    72. Pho, M, Lee, W, Watt, DR, Laschinger, C, Simmons, CA, McCulloch, CA (2008) Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. Am. J. Physiol. 294: pp. H1767-H1778
    73. Plimpton, SR, Liu, W, Kheradvar, A Immunological and phenotypic considerations in supplementing cardiac biomaterials with cells. In: Suuronen, EJ, Ruel, M eds. (2015) Biomaterials for Cardiac Regeneration. Springer International Publishing, Berlin, pp. 239-273 CrossRef
    74. Prawel, D. A., H. Dean, M. Forleo, N. Lewis, J. Gangwish, K. C. Popat, L. P. Dasi, and S. P. James. Hemocompatibility and hemodynamics of novel hyaluronan鈥損olyethylene materials for flexible heart valve leaflets. / Cardiovasc. Eng. Technol. 5:70鈥?1, 2014.
    75. Rabkin, E, Schoen, FJ (2002) Cardiovascular tissue engineering. Cardiovasc. Pathol. 11: pp. 305-317 CrossRef
    76. Rabkin-Aikawa, E, Mayer, JE, Schoen, FJ (2005) Heart valve regeneration. Adv. Biochem. Eng. Biotechnol. 94: pp. 141-179
    77. Rahmani, B, Tzamtzis, S, Ghanbari, H, Burriesci, G, Seifalian, AM (2012) Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer. J. Biomech. 45: pp. 1205-1211 CrossRef
    78. Rausch, MK, Famaey, N, Shultz, TOB, Bothe, W, Miller, DC, Kuhl, E (2013) Mechanics of the mitral valve. Biomech. Model. Mechanobiol. 12: pp. 1053-1071 CrossRef
    79. Rodriguez, KJ, Masters, KS (2009) Regulation of valvular interstitial cell calcification by components of the extracellular matrix. J. Biomed. Mater. Res. 90: pp. 1043-1053 CrossRef
    80. Roe, BB (1969) Late follow-up studies on flexible leaflet prosthetic valves. J. Thorac. Cardiovasc. Surg. 58: pp. 59-61
    81. Roe, BB, Burke, MF, Zehner, H (1960) The subcoronary implantation of a flexible tricuspid aortic valve prosthesis. J. Thorac. Cardiovasc. Surg. 40: pp. 561-567
    82. Roe, BB, Kelly, PB, Myers, JL, Moore, DW (1966) Tricuspid leaflet aortic valve prosthesis. Circulation 33: pp. I124-I130 CrossRef
    83. Roe, BB, Moore, DW (1958) Design and fabrication of prosthetic valves. Exp. Med. Surg. 16: pp. 177-182
    84. Roe, B, Owsley, J, Boudoures, P (1958) Experimental results with a prosthetic aortic valve. J. Thorac. Surg. 36: pp. 563
    85. Sachweh, JS, Daebritz, SH (2006) Novel 鈥渂iomechanical鈥?polymeric valve prostheses with special design for aortic and mitral position: a future option for pediatric patients?. ASAIO J. 52: pp. 575-580
    86. Sacks, MS (2000) Biaxial mechanical evaluation of planar biological materials. J. Elast. 61: pp. 199-246 CrossRef
    87. Sacks, MS, Schoen, FJ, Mayer, JE (2009) Bioengineering challenges for heart valve tissue engineering. Annu. Rev. Biomed. Eng. 11: pp. 289-313 CrossRef
    88. Sacks, MS, Yoganathan, AP (2007) Heart valve function: a biomechanical perspective. Philos. Trans. R. Soc. B 362: pp. 1369-1391 CrossRef
    89. Schmidt, D, Dijkman, PE, Driessen-Mol, A, Stenger, R, Mariani, C, Puolakka, A, Rissanen, M, Deichmann, T, Odermatt, B, Weber, B (2010) Minimally-invasive implantation of living tissue engineered heart valves comprehensive approach from autologous vascular cells to stem cells. J. Am. Coll. Cardiol. 56: pp. 510-520 CrossRef
    90. Schoen, FJ (2008) Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation 118: pp. 1864-1880 CrossRef
    91. Shah, DN, Recktenwall-Work, SM, Anseth, KS (2008) The effect of bioactive hydrogels on the secretion of extracellular matrix molecules by valvular interstitial cells. Biomaterials 29: pp. 2060-2072 CrossRef
    92. Shinoka, T, Breuer, CK, Tanel, RE, Zund, G, Miura, T, Ma, PX, Langer, R, Vacanti, JP, Mayer, JE (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann. Thorac. Surg. 60: pp. S513-S516 CrossRef
    93. Shinoka, T, Ma, PX, Shum-Tim, D, Breuer, CK, Cusick, RA, Zund, G, Langer, R, Vacanti, JP, Mayer, JE (1996) Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94: pp. 164-168
    94. Stephens, EH, Durst, CA, West, JL, Grande-Allen, KJ (2011) Mitral valvular interstitial cell responses to substrate stiffness depend on age and anatomic region. Acta Biomater. 7: pp. 75-82 CrossRef
    95. Sutherland, FW, Perry, TE, Yu, Y, Sherwood, MC, Rabkin, E, Masuda, Y, Garcia, GA, McLellan, DL, Engelmayr, GC, Sacks, MS (2005) From stem cells to viable autologous semilunar heart valve. Circulation 111: pp. 2783-2791 CrossRef
    96. Syedain, Z., L. A. Meier, M. T. Lahti, S. Johnson, and R. T. Tranquillo. Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. / Tissue Eng. Part A. 20:1726鈥?734, 2014.
    97. Syedain, ZH, Meier, LA, Reimer, JM, Tranquillo, RT (2013) Tubular heart valves from decellularized engineered tissue. Ann. Biomed. Eng. 41: pp. 2645-2654 CrossRef
    98. Syedain, ZH, Tranquillo, RT (2009) Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials 30: pp. 4078-4084 CrossRef
    99. Tseng, H, Cuchiara, M, Durst, C, Cuchiara, M, Lin, C, West, J, Grande-Allen, KJ (2013) Fabrication and mechanical evaluation of anatomically-inspired quasilaminate hydrogel structures with layer-specific formulations. Ann. Biomed. Eng. 41: pp. 398-407 CrossRef
    100. Tseng, H., D. S. Puperi, E. J. Kim, S. Ayoub, J. V. Shah, M. L. Cuchiara, J. L. West, and K. J. Grande-Allen. Anisotropic poly(ethylene glycol)/polycaprolactone (PEG/PCL) hydrogel-fiber composites for heart valve tissue engineering. / Tissue Eng. Part A. 20:2634鈥?645, 2014.
    101. Vesely, I (2005) Heart valve tissue engineering. Circ. Res. 97: pp. 743-755 CrossRef
    102. Vesely, I, Boughner, D (1989) Analysis of the bending behavior of porcine xenograft leaflets and of natural aortic-valve material鈥攂ending stiffness, neutral axis and shear measurements. J. Biomech. 22: pp. 655 CrossRef
    103. Weber, B, Dijkman, PE, Scherman, J, Sanders, B, Emmert, MY, Gr眉nenfelder, J, Verbeek, R, Bracher, M, Black, M, Franz, T, Kortsmit, J, Modregger, P, Peter, S, Stampanoni, M, Robert, J, Kehl, D, Doeselaar, M, Schweiger, M, Brokopp, CE, W盲lchli, T, Falk, V, Zilla, P, Driessen-Mol, A, Baaijens, FPT, Hoerstrup, SP (2013) Off-the-shelf human decellularized tissue-engineered heart valves in a non-human primate model. Biomaterials 34: pp. 7269-7280 CrossRef
    104. Wheatley, DJ, Bernacca, GM, Tolland, MM, O鈥機onnor, B, Fisher, J, Williams, DF (2001) Hydrodynamic function of a biostable polyurethane flexible heart valve after six months in sheep. Int. J. Artif. Organs 24: pp. 95-101
    105. Wheatley, DJ, Raco, L, Bernacca, GM, Sim, I, Belcher, PR, Boyd, JS (2000) Polyurethane: material for the next generation of heart valve prostheses?. Eur. J. Cardiothorac. Surg. 17: pp. 440-447 CrossRef
    106. Wisman, CB, Pierce, WS, Donachy, JH, Pae, WE, Myers, JL, Prophet, GA (1982) A polyurethane trileaflet cardiac-valve prosthesis鈥攊nvitro and invivo studies. Trans. Am. Soc. Artif. Internal Organs 28: pp. 164-168
    107. Yacoub, MH, Takkenberg, JJ (2005) Will heart valve tissue engineering change the world?. Nat. Clin. Pract. Cardiovasc. Med. 2: pp. 60-61 CrossRef
    108. Yip, CY, Chen, JH, Zhao, R, Simmons, CA (2009) Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 29: pp. 936-942 CrossRef
    109. Yip, CY, Simmons, CA (2011) The aortic valve microenvironment and its role in calcific aortic valve disease. Cardiovasc. Pathol. 20: pp. 177-182 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biomedical Engineering
    Biophysics and Biomedical Physics
    Mechanics
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-9686
文摘
As the first section of a multi-part review series, this section provides an overview of the ongoing research and development aimed at fabricating novel heart valve replacements beyond what is currently available for patients. Here we discuss heart valve replacement options that involve a biological component or process for creation, either in vitro or in vivo (tissue-engineered heart valves), and heart valves that are fabricated from polymeric material that are considered permanent inert materials that may suffice for adults where growth is not required. Polymeric materials provide opportunities for cost-effective heart valves that can be more easily manufactured and can be easily integrated with artificial heart and ventricular assist device technologies. Tissue engineered heart valves show promise as a regenerative patient specific model that could be the future of all valve replacement. Because tissue-engineered heart valves depend on cells for their creation, understanding how cells sense and respond to chemical and physical stimuli in their microenvironment is critical and therefore, is also reviewed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700