The Promise of Proprotein Convertase Subtilisin/Kexin 9 Inhibitors for the Treatment of Familial Hypercholesterolemia
详细信息    查看全文
  • 作者:Yashashwi Pokharel (1) (2)
    Salim S. Virani (1) (2) (3) (4)
    Christie M. Ballantyne (1) (2) (4) (5)

    1. Sections of Cardiovascular Research
    ; Department of Medicine ; Baylor College of Medicine ; 6565 Fannin St. Suite B157 ; Houston ; TX ; 77030 ; USA
    2. Center for Cardiovascular Disease Prevention
    ; Methodist DeBakey Heart and Vascular Center ; 6565 Fannin St. Suite B157 ; Houston ; TX ; 77030 ; USA
    3. Health Policy
    ; Quality & Informatics Program ; Michael E. DeBakey VA Medical Center Health Services Research & Development Center for Innovations ; Houston ; TX ; 77030 ; USA
    4. Sections of Cardiology
    ; Department of Medicine ; Baylor College of Medicine ; 6565 Fannin St. Suite B157 ; Houston ; TX ; 77030 ; USA
    5. 6565 Fannin St.
    ; M.S. A-601 ; Suite 656 ; Houston ; TX ; 77030 ; USA
  • 关键词:Familial hypercholesterolemia ; Proprotein convertase subtilisin/kexin 9 inhibitors
  • 刊名:Current Atherosclerosis Reports
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:17
  • 期:5
  • 全文大小:830 KB
  • 参考文献:1. Goldstein, JL, Brown, MS (1979) The LDL receptor locus and the genetics of familial hypercholesterolemia. Ann Rev Genet 13: pp. 259-89 CrossRef
    2. Innerarity, TL, Mahley, RW, Weisgraber, KH (1990) Familial defective apolipoprotein B-100: a mutation of apolipoprotein B that causes hypercholesterolemia. J Lipid Res 31: pp. 1337-49
    3. Abifadel, M, Varret, M, Rabes, JP (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34: pp. 154-6 CrossRef
    4. Zuliani, G, Arca, M, Signore, A (1999) Characterization of a new form of inherited hypercholesterolemia: familial recessive hypercholesterolemia. Arterioscler Thromb Vasc Biol 19: pp. 802-9 CrossRef
    5. Pullinger, CR, Eng, C, Salen, G (2002) Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest 110: pp. 109-17 CrossRef
    6. Hubacek, JA, Berge, KE, Cohen, JC, Hobbs, HH (2001) Mutations in ATP-cassette binding proteins G5 (ABCG5) and G8 (ABCG8) causing sitosterolemia. Hum Mutat 18: pp. 359-60 CrossRef
    7. Hopkins, PN, Toth, PP, Ballantyne, CM, Rader, DJ (2011) Familial hypercholesterolemias: prevalence, genetics, diagnosis and screening recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J Clin Lipidol 5: pp. S9-17 CrossRef
    8. Chaves, FJ, Real, JT, Garcia-Garcia, AB (2001) Genetic diagnosis of familial hypercholesterolemia in a South European outbreed population: influence of low-density lipoprotein (LDL) receptor gene mutations on treatment response to simvastatin in total, LDL, and high-density lipoprotein cholesterol. J Clin Endocrinol Metab 86: pp. 4926-32 CrossRef
    9. Versmissen, J, Oosterveer, DM, Yazdanpanah, M (2008) Efficacy of statins in familial hypercholesterolaemia: a long term cohort study. BMJ 337: pp. a2423 CrossRef
    10. Neil, A, Cooper, J, Betteridge, J (2008) Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: a prospective registry study. Eur Heart J 29: pp. 2625-33 heartj/ehn422" target="_blank" title="It opens in new window">CrossRef
    11. Pijlman, AH, Huijgen, R, Verhagen, SN (2010) Evaluation of cholesterol lowering treatment of patients with familial hypercholesterolemia: a large cross-sectional study in The Netherlands. Atherosclerosis 209: pp. 189-94 CrossRef
    12. Stone, NJ, Robinson, JG, Lichtenstein, AH (2014) 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63: pp. 2889-934 CrossRef
    13. Cohen, J, Pertsemlidis, A, Kotowski, IK (2005) Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 37: pp. 161-5 CrossRef
    14. Cohen, JC, Boerwinkle, E, Mosley, TH, Hobbs, HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354: pp. 1264-72 CrossRef
    15. Kathiresan, S (2008) A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. N Engl J Med 358: pp. 2299-300 CrossRef
    16. Benn, M, Nordestgaard, BG, Grande, P (2010) PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol 55: pp. 2833-42 CrossRef
    17. Law, MR, Wald, NJ, Rudnicka, AR (2003) Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ 326: pp. 1423 CrossRef
    18. Park, SW, Moon, YA, Horton, JD (2004) Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J Biol Chem 279: pp. 50630-8 CrossRef
    19. Maxwell, KN, Fisher, EA, Breslow, JL (2005) Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc Natl Acad Sci U S A 102: pp. 2069-74 CrossRef
    20. Lagace, TA, Curtis, DE, Garuti, R (2006) Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice. J Clin Invest 116: pp. 2995-3005 CrossRef
    21. Rashid, S, Curtis, DE, Garuti, R (2005) Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci U S A 102: pp. 5374-9 CrossRef
    22. Dadu, RT, Ballantyne, CM (2014) Lipid lowering with PCSK9 inhibitors. Nat Rev Cardiol 11: pp. 563-75 CrossRef
    23. Graham, MJ, Lemonidis, KM, Whipple, CP (2007) Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J Lipid Res 48: pp. 763-7 CrossRef
    24. Gupta, N, Fisker, N, Asselin, MC (2010) A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One 5: pp. e10682 CrossRef
    25. Frank-Kamenetsky, M, Grefhorst, A, Anderson, NN (2008) Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci U S A 105: pp. 11915-20 CrossRef
    26. Shan, L, Pang, L, Zhang, R (2008) PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide. Biochem Biophys Res Commun 375: pp. 69-73 CrossRef
    27. Zhang, Y, Eigenbrot, C, Zhou, L (2014) Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J Biol Chem 289: pp. 942-55 CrossRef
    28. Benjannet, S, Hamelin, J, Chretien, M, Seidah, NG (2012) Loss- and gain-of-function PCSK9 variants: cleavage specificity, dominant negative effects, and low density lipoprotein receptor (LDLR) degradation. J Biol Chem 287: pp. 33745-55 CrossRef
    29. Goldstein, JL, Brown, MS, Anderson, RG (1985) Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Ann Rev Cell Biol 1: pp. 1-39 CrossRef
    30. Lambert, G, Sjouke, B, Choque, B (2012) The PCSK9 decade. J Lipid Res 53: pp. 2515-24 CrossRef
    31. Stein, EA, Mellis, S, Yancopoulos, GD (2012) Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N Engl J Med 366: pp. 1108-18 CrossRef
    32. Dias, CS, Shaywitz, AJ, Wasserman, SM (2012) Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J Am Coll Cardiol 60: pp. 1888-98 CrossRef
    33. Gumbiner, B, Udata, C, Joh, T (2012) The effects of single dose administration of RN316 (PF-04950615), a humanized IgG2螖a monoclonal antibody binding proprotein convertase subtilisin kexin type 9, in hypercholesterolemic subjects treated with and without atorvastatin (abstract 13322). Circulation 126: pp. A13322
    34. Gumbiner, B, Udata, C, Joh, T (2012) The effects of multiple dose administration of RN316 (PF-04950615), a humanized IgG2螖a monoclonal antibody binding proprotein convertase subtilisin kexin type 9, in hypercholesterolemic subjects (abstract 13524). Circulation 126: pp. A13524
    35. Stein, EA, Gipe, D, Bergeron, J (2012) Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet 380: pp. 29-36 CrossRef
    36. Dufour R, Stein EA, Gaudet D, et al. One year open-label treatment with alirocumab 150 mg every two weeks in heterozygous familial hypercholesterolemic patients. Presented at American College of Cardiology Scientific Session, Washington, DC, 2014. Abstract 1183鈥?26.
    37. Raal, F, Scott, R, Somaratne, R (2012) Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the Reduction of LDL-C with PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder (RUTHERFORD) randomized trial. Circulation 126: pp. 2408-17 CrossRef
    38. McKenney, JM, Koren, MJ, Kereiakes, DJ (2012) Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol 59: pp. 2344-53 CrossRef
    39. Roth, EM, McKenney, JM, Hanotin, C (2012) Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med 367: pp. 1891-900 CrossRef
    40. Giugliano, RP, Desai, NR, Kohli, P (2012) Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet 380: pp. 2007-17 CrossRef
    41. Koren, MJ, Scott, R, Kim, JB (2012) Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet 380: pp. 1995-2006 CrossRef
    42. Sullivan, D, Olsson, AG, Scott, R (2012) Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA 308: pp. 2497-506 CrossRef
    43. Ballantyne CM, Neutel J, Cropp A, et al. Efficacy and safety of bococizumab (RN316/PF-04950615), a monoclonal antibody against proprotein convertase subtilisin/kexin type 9 in statin-treated hypercholesterolemic subjects: results from a randomized, placebo-controlled, dose-ranging study (NCT: 01592240). Presented at American College of Cardiology Scientific Session, Washington, DC, 30 March 2014. Abstract 1183鈥?29.
    44. Gumbiner, B, Joh, T, Udata, C (2012) Effects of 12 weeks of treatment with RN316 (PF-04950615), a humanized IgG2螖a monoclonal antibody binding proprotein convertase subtilisin kexin type 9, in hypercholesterolemic subjects on high and maximal dose statins (late-breaking clinical trial abstract). Circulation 126: pp. 2782
    45. Raal FJ, Stein EA, Dufour R, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet 2014. Online before print. / This phase 3 study showed significant reuctions in LDL-C, apo B and Lp(a) levels in 331 HeFH patients on maximally tolerated statin and other lipid lowering medications.
    46. Kastelein JJP, G insberg HN, Langslet G, et al. Efficacy and safety of alirocumab: Results from the ODYSSEY COMBO II study and results of ODYSSEY FH I and FH II studies. Presented at ESC Congress, Barcelona, Spain, 2014.
    47. Ginsberg HN, Rader D, Raal F, et al. ODYSSEY HIGH FH: Efficacy and safety of alirocumab in patients with severe heterozygous familial hyperchoelsterolemia. Presented at American Heart Association Scientific Sessions, Chicago, Illinois, 2014.
    48. Robinson JG, Farnier M, Krempf M, et al. Long-term safety, tolerability and efficacy of alirocumab in high cardiovascular risk patients: ODYSSEY LONG TERM. Presented at American Heart Association Scientific Sessions, Chicago, Illinois, 2014.
    49. Raal FJ, Honarpour N, Blom DJ, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA part B): a randomised, double-blind, placebo-controlled trial. Lancet 2014. Online before print. / This phase 3 study showed significant reuctions in LDL-C and apo B levels in 50 HoFH patients on maximally tolerated statin and other lipid lowering medications.
    50. LaRosa, JC, Pedersen, TR, Somaratne, R, Wasserman, SM (2013) Safety and effect of very low levels of low-density lipoprotein cholesterol on cardiovascular events. Am J Cardiol 111: pp. 1221-9 CrossRef
    51. Stein EA, Turner T, Plunkett N, et al. Friedewald formula significantly underestimates LDL cholesterol compared to preparative ultracentrifugation below 70 mg/dL leading to overestimation of the LDL cholesterol reduction for new drugs in development. J Am Coll Cardiol 2014; 63:(12_S).
    52. Roubtsova, A, Munkonda, MN, Awan, Z (2011) Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol 31: pp. 785-91 CrossRef
    53. Mbikay, M, Sirois, F, Mayne, J (2010) PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett 584: pp. 701-6 CrossRef
    54. Labonte, P, Begley, S, Guevin, C (2009) PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology (Baltimore, Md) 50: pp. 17-24 CrossRef
    55. Ranheim, T, Mattingsdal, M, Lindvall, JM (2008) Genome-wide expression analysis of cells expressing gain of function mutant D374Y-PCSK9. J Cell Physiol 217: pp. 459-67 CrossRef
    56. Lan, H, Pang, L, Smith, MM (2010) Proprotein convertase subtilisin/kexin type 9 (PCSK9) affects gene expression pathways beyond cholesterol metabolism in liver cells. J Cell Physiol 224: pp. 273-81
  • 刊物主题:Angiology; Cardiology;
  • 出版者:Springer US
  • ISSN:1534-6242
文摘
Familial hypercholesterolemia comprises a constellation of genetic disorders resulting in very high cholesterol levels since childhood. If untreated, it is associated with accelerated atherosclerosis and premature cardiovascular disease. It has been shown that if aggressive cholesterol lowering is achieved in familial hypercholesterolemia, the incidence of cardiovascular disease can be lowered. However, currently approved pharmacological therapies are not able to lower cholesterol to optimal levels in a large number of these patients. Proprotein convertase subtilisin/kexin 9 inhibitors are a new class of cholesterol-lowering medications that can significantly reduce cholesterol levels in these patients especially those with at least some functioning low-density lipoprotein receptors. In this article, we will briefly review familial hypercholesterolemia and the role of proprotein convertase subtilisin/kexin 9 inhibitors in this condition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700