Highly heat-resistant poly(о-hydroxy amide) binders of polyfunctional composites for microelectronics
详细信息    查看全文
  • 作者:G. K. Lebedeva ; A. S. Bazhenova ; L. I. Rudaya…
  • 刊名:Russian Journal of Applied Chemistry
  • 出版年:2016
  • 出版时间:October 2016
  • 年:2016
  • 卷:89
  • 期:10
  • 页码:1647-1654
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering;
  • 出版者:Pleiades Publishing
  • ISSN:1608-3296
  • 卷排序:89
文摘
A series of structurally similar poly(o-hydroxy amides), homo- and copolymers with different bridging fragments in the amine component, were synthesized. The heat resistance and electrophysical parameters of powdered polymer samples, of micrometer-thick films formed on substrates from reaction solutions of these polymers, and of films of photosensitive formulations based on them, containing photosensitive diazonaphthalenone component, were studied. Introduction of hexafluoropropane fragment into the macromolecule enhances the heat resistance of the polymer (powders and films) and decreases the dielectric permittivity of the films, compared to the reference poly(o-hydroxy amide) derived from 3,3'-dihydroxy-4,4'-diaminodiphenylmethane. The tetramethylsiloxane fragment considerably decreases the heat resistance of polymer powders and films, but improves the dielectric parameters of the coatings. Introduction of the diphenyl oxide fragment into poly(o-hydroxy amide) complicated the formation of high-resolution microrelief in films of the photosensitive formulation owing to a sharp decrease in the solubility of the films in alkaline solutions. Suitable electrophysical parameters and thermal characteristics of the polymers obtained, their capability for film formation, compatibility with photosensitive components, and possibility of the formation of high-resolution positive microrelief upon exposure allow these polymers to be recommended as promising polymeric binders for highly heat-resistant organic dielectrics and protective coatings for microelectronics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700