Multimodal retinal imaging of diabetic macular edema: toward new paradigms of pathophysiology
详细信息    查看全文
  • 作者:Edoardo Midena ; Silvia Bini
  • 刊名:Graefe's Archive for Clinical and Experimental Ophthalmology
  • 出版年:2016
  • 出版时间:September 2016
  • 年:2016
  • 卷:254
  • 期:9
  • 页码:1661-1668
  • 全文大小:1,536 KB
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Ophthalmology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-702X
  • 卷排序:254
文摘
The pathophysiology of diabetic macular edema (DME) is multifactorial and partly still unknown. An increasing body of evidence suggests that neurodegeneration and retinal glial cells activation occur even before the earliest clinical manifestation of diabetic retinal vasculopathy. Nowadays, new non-invasive techniques are available to assess and characterize DME, not only in a quantitative perspective, but also making it possible to understand and quantify the pathogenic processes sustaining fluid accumulation. Optical coherence tomography (OCT) allows documenting not only parameters such as macular volume, central and sectorial retinal thickness, fluid localization, and integrity of retinal layers, but also new still poorly investigated reflectivity aspects. Hyperreflective intraretinal spots (HRS) have been detected on OCT scans through the retinal layers, with a presumptive migration pattern towards the external layers during the occurrence of diabetic retinopathy and DME. These HRS have been hypothesised to represent an in-vivo marker of microglial activation. Autofluorescence of the fundus (FAF) also offers a non-invasive imaging technique of DME. The area of increased FAF correlates with the presence of intraretinal fluid and probably retinal glial activation. Microperimetry allows the measurement of retinal sensitivity by testing specific selected retinal areas. Some studies have shown that increased macular FAF in DME correlates better with visual function assessed with microperimetry than with visual acuity, showing that new imaging and functional techniques may help to elucidate DME pathogenesis and to target therapeutical strategies.KeywordsDiabetic macular edemaOptical coherence tomographyEn-face optical coherence tomographyAutofluorescenceMicroperimetry

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700