Effect of strain rate on the fracture behaviour of epoxy–graphene nanocomposite
详细信息    查看全文
文摘
In this study, epoxy-based nanocomposite was fabricated by the addition of graphene nanosheet via a solution casting method. To investigate the effect of strain rate on tensile properties of epoxy, tensile tests were done on standard samples at different strain rates (0.05–1 min−1). The role of strain rate and presence of graphene on fracture behaviour of epoxy were also studied by investigation of the fracture surfaces of some samples by scanning electron microscopy (SEM). Finally, Eyring’s model was performed to clarify the role of strain rate on activation volume and activation enthalpy of epoxy. The results of tensile tests showed a maximum strength of epoxy–graphene nanocomposite at the graphene wt% of 0.1%. Tensile strength of epoxy obviously improved with increasing strain rate, but tensile strength of epoxy/graphene nanocomposite sample was less sensitive. Fracture micrographs showed that the mirror zone of the fracture surface of epoxy diminished by increasing strain rate or addition of graphene; and final fracture zone also became rougher. Finally, by investigation of the activation enthalpies, it was showed that much higher enthalpy was needed to fracture the nanocomposite sample, as the activation enthalpy changed from 41.54 for neat epoxy to 67.34 kJ mol−1 for EP–0.1% GNS sample.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700