Structure of catalytic domain of Matriptase in complex with Sunflower trypsin inhibitor-1
详细信息    查看全文
  • 作者:Cai Yuan (1)
    Liqing Chen (2)
    Edward J Meehan (2)
    Norelle Daly (3)
    David J Craik (3)
    Mingdong Huang (1)
    Jacky C Ngo (4)
  • 刊名:BMC Structural Biology
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:11
  • 期:1
  • 全文大小:5611KB
  • 参考文献:1. Tanimoto H, Underwood LJ, Wang Y, Shigemasa K, Parmley TH, O'Brien TJ: Ovarian tumor cells express a transmembrane serine protease: a potential candidate for early diagnosis and therapeutic intervention. / Tumour Biol 2001,22(2):104-14. CrossRef
    2. Lin CY, Anders J, Johnson M, Sang QA, Dickson RB: Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. / J Biol Chem 1999,274(26):18231-8236. CrossRef
    3. Takeuchi T, Shuman MA, Craik CS: Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. / Proc Natl Acad Sci USA 1999,96(20):11054-1061. CrossRef
    4. Milner JM, Patel A, Davidson RK, Swingler TE, Desilets A, Young DA, Kelso EB, Donell ST, Cawston TE, Clark IM, / et al.: Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis. / Arthritis Rheum 2010,62(7):1955-966.
    5. Kilpatrick LM, Harris RL, Owen KA, Bass R, Ghorayeb C, Bar-Or A, Ellis V: Initiation of plasminogen activation on the surface of monocytes expressing the type II transmembrane serine protease matriptase. / Blood 2006,108(8):2616-623. CrossRef
    6. Cheng MF, Jin JS, Wu HW, Chiang PC, Sheu LF, Lee HS: Matriptase expression in the normal and neoplastic mast cells. / Eur J Dermatol 2007,17(5):375-80.
    7. List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, Swaim W, Engelholm LH, Behrendt N, Bugge TH: Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. / Oncogene 2002,21(23):3765-779. CrossRef
    8. Szabo R, Molinolo A, List K, Bugge TH: Matriptase inhibition by hepatocyte growth factor activator inhibitor-1 is essential for placental development. / Oncogene 2007,26(11):1546-556. CrossRef
    9. Szabo R, Kosa P, List K, Bugge TH: Loss of matriptase suppression underlies spint1 mutation-associated ichthyosis and postnatal lethality. / Am J Pathol 2009,174(6):2015-022. CrossRef
    10. Fan B, Brennan J, Grant D, Peale F, Rangell L, Kirchhofer D: Hepatocyte growth factor activator inhibitor-1 (HAI-1) is essential for the integrity of basement membranes in the developing placental labyrinth. / Dev Biol 2007,303(1):222-30. CrossRef
    11. Carney TJ, von der Hardt S, Sonntag C, Amsterdam A, Topczewski J, Hopkins N, Hammerschmidt M: Inactivation of serine protease Matriptase1a by its inhibitor Hai1 is required for epithelial integrity of the zebrafish epidermis. / Development 2007,134(19):3461-471. CrossRef
    12. Oberst MD, Williams CA, Dickson RB, Johnson MD, Lin CY: The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor. / J Biol Chem 2003,278(29):26773-6779. CrossRef
    13. Lee MS, Tseng IC, Wang Y, Kiyomiya K, Johnson MD, Dickson RB, Lin CY: Autoactivation of matriptase in vitro: requirement for biomembrane and LDL receptor domain. / Am J Physiol Cell Physiol 2007,293(1):C95-05. CrossRef
    14. Tseng IC, Xu H, Chou FP, Li G, Vazzano AP, Kao JP, Johnson MD, Lin CY: Matriptase activation, an early cellular response to acidosis. / J Biol Chem 2010,285(5):3261-270. CrossRef
    15. Lee SL, Dickson RB, Lin CY: Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. / J Biol Chem 2000,275(47):36720-6725. CrossRef
    16. Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS: Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. / J Biol Chem 2000,275(34):26333-6342. CrossRef
    17. Sales K, Masedunskas A, Bey A, Rasmussen A, Weigert R, List K, Szabo R, Overbeek P, Bugge T: Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. / Nat Genet 2010,42(8):676-83. CrossRef
    18. List K: Matriptase: a culprit in cancer? / Future Oncol 2009,5(1):97-04. CrossRef
    19. Saleem M, Adhami VM, Zhong W, Longley BJ, Lin CY, Dickson RB, Reagan-Shaw S, Jarrard DF, Mukhtar H: A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. / Cancer Epidemiol Biomarkers Prev 2006,15(2):217-27. CrossRef
    20. Lee JW, Yong Song S, Choi JJ, Lee SJ, Kim BG, Park CS, Lee JH, Lin CY, Dickson RB, Bae DS: Increased expression of matriptase is associated with histopathologic grades of cervical neoplasia. / Hum Pathol 2005,36(6):626-33. CrossRef
    21. Tanimoto H, Shigemasa K, Tian X, Gu L, Beard JB, Sawasaki T, O'Brien TJ: Transmembrane serine protease TADG-15 (ST14/Matriptase/MT-SP1): expression and prognostic value in ovarian cancer. / Br J Cancer 2005,92(2):278-83.
    22. List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, Murdock T, Burke B, Nielsen BS, Gutkind JS, Bugge TH: Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. / Genes Dev 2005,19(16):1934-950. CrossRef
    23. Seitz I, Hess S, Schulz H, Eckl R, Busch G, Montens HP, Brandl R, Seidl S, Schomig A, Ott I: Membrane-type serine protease-1/matriptase induces interleukin-6 and -8 in endothelial cells by activation of protease-activated receptor-2: potential implications in atherosclerosis. / Arterioscler Thromb Vasc Biol 2007,27(4):769-75. CrossRef
    24. Basel-Vanagaite L, Attia R, Ishida-Yamamoto A, Rainshtein L, Ben Amitai D, Lurie R, Pasmanik-Chor M, Indelman M, Zvulunov A, Saban S, / et al.: Autosomal recessive ichthyosis with hypotrichosis caused by a mutation in ST14, encoding type II transmembrane serine protease matriptase. / Am J Hum Genet 2007,80(3):467-77. CrossRef
    25. Avrahami L, Maas S, Pasmanik-Chor M, Rainshtein L, Magal N, Smitt J, van Marle J, Shohat M, Basel-Vanagaite L: Autosomal recessive ichthyosis with hypotrichosis syndrome: further delineation of the phenotype. / Clin Genet 2008,74(1):47-3. CrossRef
    26. Alef T, Torres S, Hausser I, Metze D, Tursen U, Lestringant GG, Hennies HC: Ichthyosis, follicular atrophoderma, and hypotrichosis caused by mutations in ST14 is associated with impaired profilaggrin processing. / J Invest Dermatol 2009,129(4):862-69. CrossRef
    27. Long YQ, Lee SL, Lin CY, Enyedy IJ, Wang S, Li P, Dickson RB, Roller PP: Synthesis and evaluation of the sunflower derived trypsin inhibitor as a potent inhibitor of the type II transmembrane serine protease, matriptase. / Bioorg Med Chem Lett 2001,11(18):2515-519. CrossRef
    28. Luckett S, Garcia RS, Barker JJ, Konarev AV, Shewry PR, Clarke AR, Brady RL: High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. / J Mol Biol 1999,290(2):525-33. CrossRef
    29. Zhao G, Yuan C, Wind T, Huang Z, Andreasen PA, Huang M: Structural basis of specificity of a peptidyl urokinase inhibitor, upain-1. / J Struct Biol 2007,160(1):1-0. CrossRef
    30. Friedrich R, Fuentes-Prior P, Ong E, Coombs G, Hunter M, Oehler R, Pierson D, Gonzalez R, Huber R, Bode W, / et al.: Catalytic domain structures of MT-SP1/matriptase, a matrix-degrading transmembrane serine proteinase. / J Biol Chem 2002,277(3):2160-168. CrossRef
    31. Li Y, Huang Q, Zhang S, Liu S, Chi C, Tang Y: Studies on an artificial trypsin inhibitor peptide derived from the mung bean trypsin inhibitor: chemical synthesis, refolding, and crystallographic analysis of its complex with trypsin. / J Biochem 1994,116(1):18-5.
    32. Tsunogae Y, Tanaka I, Yamane T, Kikkawa J, Ashida T, Ishikawa C, Watanabe K, Nakamura S, Takahashi K: Structure of the trypsin-binding domain of Bowman-Birk type protease inhibitor and its interaction with trypsin. / J Biochem 1986,100(6):1637-646.
    33. Werner MH, Wemmer DE: Three-dimensional structure of soybean trypsin/chymotrypsin Bowman-Birk inhibitor in solution. / Biochemistry 1992,31(4):999-010. CrossRef
    34. Gallivan JP, Dougherty DA: Cation-pi interactions in structural biology. / Proc Natl Acad Sci USA 1999,96(17):9459-464. CrossRef
    35. Crowley PB, Golovin A: Cation-pi interactions in protein-protein interfaces. / Proteins 2005,59(2):231-39. CrossRef
    36. Li P, Jiang S, Lee SL, Lin CY, Johnson MD, Dickson RB, Michejda CJ, Roller PP: Design and synthesis of novel and potent inhibitors of the type II transmembrane serine protease, matriptase, based upon the sunflower trypsin inhibitor-1. / J Med Chem 2007,50(24):5976-983. CrossRef
    37. Chang CE, Chen W, Gilson MK: Ligand configurational entropy and protein binding. / Proc Natl Acad Sci USA 2007,104(5):1534-539. CrossRef
    38. Shakkottai VG, Regaya I, Wulff H, Fajloun Z, Tomita H, Fathallah M, Cahalan MD, Gargus JJ, Sabatier JM, Chandy KG: Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2. / J Biol Chem 2001,276(46):43145-3151. CrossRef
    39. Korsinczky MLJ, Schirra HJ, Rosengren KJ, West J, Condie BA, Otvos L, Anderson MA, Craik DJ: Solution structures by 1H NMR of the novel cyclic trypsin inhibitor SFTI-1 from sunflower seeds and an acyclic permutant. / J Mol Biol 2001,311(3):579-91. CrossRef
    40. Vagin A, Teplyakov A: MOLREP: an automated program for molecular replacement. / J Appl Cryst 1997, 30:1022-025. CrossRef
    41. CCP4: The CCP4 suite; Programs for protein crystallography. / Acta Crystallogr D Biol Crystallogr 1994, 50:760-63. CrossRef
    42. Murshudov GN, Vagin AA, Dodson EJ: Refinement of macromolecular structures by the maximum-likelihood method. / Acta Crystallogr D Biol Crystallogr 1997,53(Pt 3):240-55. CrossRef
    43. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, / et al.: PHENIX: a comprehensive Python-based system for macromolecular structure solution. / Acta Crystallogr D Biol Crystallogr 2010,66(2):213-21. CrossRef
    44. Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. / Acta Crystallogr D Biol Crystallogr 2004, 60:2126-132. CrossRef
    45. Painter J, Merritt EA: TLSMD web server for the generation of multi-group TLS models. / J Appl Crystallogr 2006, 39:109-11. CrossRef
    46. Laskowski RA, MacArthur MW, Mass DS, Thornton JM: PROCHECK: a program to check the stereochemical quality of protein structures. / J Appl Crystallogr 1993, 26:283-91. CrossRef
    47. DeLano WL: / The PyMol Molecular Graphics system. DeLano scientific, San Carlos, CA, USA; 2002.
    48. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA: Electrostatics of nanosystems: Application to microtubules and the ribosome. / Proc Natl Acad Sci USA 2001, 98:10037-0041. CrossRef
    49. Jin L, Pandey P, Babine RE, Weaver DT, Abdel-Meguid SS, Strickler JE: Mutation of surface residues to promote crystallization of activated factor XI as a complex with benzamidine: an essential step for the iterative structure-based design of factor XI inhibitors. / Acta Crystallogr D Biol Crystallogr 2005, 61:1418-425. CrossRef
  • 作者单位:Cai Yuan (1)
    Liqing Chen (2)
    Edward J Meehan (2)
    Norelle Daly (3)
    David J Craik (3)
    Mingdong Huang (1)
    Jacky C Ngo (4)

    1. State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
    2. Laboratory for Structural Biology, Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
    3. Division of Chemistry and Structural Biology, University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, 4072, Australia
    4. The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
  • ISSN:1472-6807
文摘
Background Matriptase is a type II transmembrane serine protease that is found on the surfaces of epithelial cells and certain cancer cells. Matriptase has been implicated in the degradation of certain extracellular matrix components as well as the activation of various cellular proteins and proteases, including hepatocyte growth factor and urokinase. Sunflower trypsin inhibitor-1 (SFTI-1), a cyclic peptide inhibitor originally isolated from sunflower seeds, exhibits potent inhibitory activity toward matriptase. Results We have engineered and produced recombinant proteins of the matriptase protease domain, and have determined the crystal structures of the protease:SFTI-1 complex at 2.0 ? as well as the protease:benzamidine complex at 1.2 ?. These structures elaborate the structural basis of substrate selectivity of matriptase, and show that the matriptase S1 substrate specificity pocket is larger enough to allow movement of benzamidine inside the S1 pocket. Our study also reveals that SFTI-1 binds to matriptase in a way similar to its binding to trypsin despite the significantly different isoelectric points of the two proteins (5.6 vs. 8.2). Conclusions This work helps to define the structural basis of substrate specificity of matriptase and the interactions between the inhibitor and protease. The complex structure also provides a structural template for designing new SFTI-1 derivatives with better potency and selectivity against matriptase and other proteases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700