Free and transient vibration analysis of an un-symmetric cross-ply laminated plate by spectral finite elements
详细信息    查看全文
  • 作者:Hesam Hajheidari (1)
    Hamid Reza Mirdamadi (1)
  • 刊名:Acta Mechanica
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:223
  • 期:11
  • 页码:2477-2492
  • 全文大小:742KB
  • 参考文献:1. Leissa A.W.: Advances in vibration, buckling and postbuckling studies on composite plates. Compos. Struct. 63, 312鈥?34 (1981) CrossRef
    2. Reddy J.N.: A review of the literature on finite element modeling of laminated composite plates. Shock Vib. Dig. 17, 3鈥? (1985) CrossRef
    3. Kapania R.K., Raciti S.: Recent advances in analysis of laminated beams and plates鈥擯art II: vibration and wave propagation. AIAA J. 27, 935鈥?46 (1989) CrossRef
    4. Narayanan G.V., Beskos D.E.: Use of dynamic influence coefficients in forced vibration problems with the aid of fast Fourier transform. Comput. Struct. 9, 145鈥?50 (1978) CrossRef
    5. Doyle J.F.: A spectrally formulated finite element for longitudinal wave propagation. Int. J. Anal. Exp. Modal Anal. 3, 1鈥? (1988)
    6. Doyle J.F.: Wave Propagation in Structures. Springer, New York (1989) CrossRef
    7. Doyle J.F., Farris T.N.: A spectrally formulated finite element for flexural wave propagation in beams. Int. J. Anal. Exp. Modal Anal. 5, 99鈥?07 (1990)
    8. Rizzi S.A., Doyle J.F.: A spectral element approach to wave motion in layered solids. ASME J. Vib. Acoust. 114, 569鈥?77 (1992) CrossRef
    9. Lee U., Lee J.: Vibration analysis of the plates subject to distributed dynamic loads by using spectral element method. KSME Int. J. 12, 565鈥?71 (1998)
    10. Lee U., Lee J.: Spectral-element method for Levy-type plates subject to dynamic loads. J. Eng. Mech.-ASCE 125, 243鈥?47 (1999) CrossRef
    11. Baz A.: Spectral finite-element modeling of the longitudinal wave propagation in rods treated with active constrained layer damping. Smart Mater. Struct. 9, 372鈥?77 (2000) CrossRef
    12. Lee U., Kim J.: Dynamics of elastic-piezoelectric two-layer beams using spectral element method. Int. J. Solids Struct. 37, 4403鈥?417 (2000) CrossRef
    13. Mahapatra D.R., Gopalakrishnan S., Sankar T.S.: Spectral-element-based solutions for wave propagation analysis of multiply connected unsymmetric laminated composite beams. J. Sound Vib. 237, 819鈥?36 (2000) CrossRef
    14. Lee U., Kim J.: Spectral element modeling for the beams treated with active constraining layer damping. Int. J. Solids Struct. 38, 5679鈥?702 (2001) CrossRef
    15. Wang G., Wereley N.M.: Spectral finite element analysis of sandwich beams with passive constrained layer damping. ASME J. Vib. Acoust. 124, 376鈥?86 (2002) CrossRef
    16. Mahapatra D.R., Gopalakrishnan S.: A spectral finite element model for analysis of axial-flexural-shear coupled wave propagation in laminated composite beams. Comput. Struct. 59, 67鈥?8 (2003) CrossRef
    17. Chakraborty A., Gopalakrishnan S.: A spectrally formulated finite element for wave propagation analysis in functionally graded beams. Int. J. Solids Struct. 40, 2421鈥?448 (2003) CrossRef
    18. Kim J., Cho J., Lee U.: Modal spectral element formulation for axially moving plates subjected to in-plane axial tension. Comput. Struct. 81, 2011鈥?020 (2003) CrossRef
    19. Chakraborty A., Gopalakrishnan S.: A spectrally formulated finite element for wave propagation analysis in layered composite media. Int. J. Solids Struct. 41, 5155鈥?183 (2004) CrossRef
    20. Chakraborty A., Gopalakrishnan S.: An approximate spectral element for the analysis of wave propagation in inhomogeneous layered media. AIAA J. 44, 1676鈥?685 (2006) CrossRef
    21. Lee U., Lee C.: Spectral element modeling for extended Timoshenko beams. J. Sound Vib. 319, 993鈥?002 (2009) CrossRef
    22. Lee U.: Spectral Element Method in Structural Dynamics. Wiley, Singapore (2009) CrossRef
    23. Lee, U., Jang, I.: Spectral element model for the transverse vibrations of thin plates. In: ASME Conference on Proceedings of 10th Biennial Conference on Engineering Systems Design and Analysis, vol. 4, pp. 303鈥?07 (2010)
    24. Lee U., Jang I.: Spectral element model for axially loaded bending-shear-torsion coupled composite Timoshenko beams. Compos. Struct. 92, 2860鈥?870 (2010) CrossRef
    25. Narendar S., Gopalakrishnan S.: Spectral finite element formulation for nanorods via nonlocal continuum mechanics. ASME J. Appl. Mech. 78, 061018 (2011) CrossRef
    26. Cheung Y.K, Tham L.G.: The Finite Strip Method. CRC Press, Boca Raton (1997)
    27. Reddy J.N.: Mechanics of Laminated Composite Plates and Shells. CRC Press, Boca Raton (2004)
    28. Burden R.L., Faires J.D.: Numerical Analysis. PWS-Kent Publishing Co, Boston (1989)
    29. Hadian J., Nayfeh A.H.: Free vibration and buckling of shear-deformable cross-ply laminated plates using the state-space concept. Comput. Struct. 48, 677鈥?93 (1993) CrossRef
    30. Clough R.W., Penzien J.: Dynamics of Structures. Computers and Structures Inc, Berkeley (2003)
    31. Bathe K.J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs (1996)
  • 作者单位:Hesam Hajheidari (1)
    Hamid Reza Mirdamadi (1)

    1. Department of Mechanical Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
  • ISSN:1619-6937
文摘
In this study, a spectral finite element formulation for free and transient vibration analysis of a rectangular un-symmetric cross-ply laminated composite plate of Levy-type is developed. Plate kinematics obeys classical lamination plate theory. The formulation is based on dynamic shape functions in frequency-domain derived from the exact solution of the governing wave equations. Based on Levy-type solution and finite strip method, 2/D space-time partial differential equations (PDEs) of motion are transformed to 1/D space-time PDEs. Spectral elements are used to transform 1/D space-time PDEs to temporal ordinary differential equations. For investigating validity and accuracy of the model presented, numerical solutions are established for both free and transient vibrations. Comparison of spectral finite element method (SFEM) time responses with an exact analytical method demonstrates the superiority of SFEM in both reducing computational cost and increasing numerical accuracy. It is correct especially for excitations of high-frequency contents. A comparison of SFEM and FEM shows the same result.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700