Optimal radiation shielding for beta and bremsstrahlung radiation emitted by 89Sr and 90Y: validation by empirical approach and Monte Carlo simulations
详细信息    查看全文
  • 作者:Taisuke Murata (1)
    Kenta Miwa (1) (2)
    Fumiyasu Matsubayashi (1)
    Kei Wagatsuma (1)
    Kenta Akimoto (1)
    Toshioh Fujibuchi (2)
    Noriaki Miyaji (1)
    Tomohiro Takiguchi (1)
    Masayuki Sasaki (2)
    Mitsuru Koizumi (1)
  • 关键词:Occupational exposure ; Radiation protection ; Beta emitter ; Bremsstrahlung radiation ; Monte Carlo simulation ; Radionuclide therapy
  • 刊名:Annals of Nuclear Medicine
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:28
  • 期:7
  • 页码:617-622
  • 全文大小:799 KB
  • 参考文献:1. Kuwabara Y, Koizumi K, Ushijima Y, Kinuya S, Kinomura S, Suga K, et al. Nuclear medicine practice in Japan: a report of the sixth nationwide survey in 2007. Ann Nucl Med. 2009;23(2):209-5. CrossRef
    2. Cremonesi M, Ferrari M, Paganelli G, Rossi A, Chinol M, Bartolomei M, et al. Radiation protection in radionuclide therapies with (90)Y-conjugates: risks and safety. Eur J Nucl Med Mol Imaging. 2006;33(11):1321-.
    3. Rimpler A, Barth I. Beta radiation exposure of medical staff and implications for extremity dose monitoring. Radiat Prot Dosim. 2007;125(1-):335-.
    4. Delacroix D, Guerre JP, Leblanc P, Hickman C. Radionuclide and radiation protection data handbook 2nd edition (2002). Radiat Prot Dosim. 2002;98(1):9-68. CrossRef
    5. Rimpler A, Barth I, Baum RB, Senftleben S, Geworski L. Beta radiation exposure of staff during and after therapies with 90Y-labelled substances. Radiat Prot Dosim. 2008;131(1):73-. CrossRef
    6. Zanzonico PB, Binkert BL, Goldsmith SJ. Bremsstrahlung radiation exposure from pure beta-ray emitters. J Nucl Med. 1999;40(6):1024-.
    7. Van Pelt WR, Drzyzga M. Beta radiation shielding with lead and plastic: effect on bremsstrahlung radiation when switching the shielding order. Health Phys. 2007;92(Suppl 2):S13-. CrossRef
    8. Eakins JS, Baker ST, Gibbens NJ, Gilvin PJ, Hager LG, Tanner RJ. Monte Carlo modelling of 90Sr/90Y and 85Kr beta fields for Hp(3) measurements. Radiat Prot Dosim. 2014;158(1):115-1. CrossRef
    9. Anti? V, Stankovi? K, Vujisi? M, Osmokrovi? P. Comparison of various methods for designing the shielding from ionising radiation at PET-CT installations. Radiat Prot Dosim. 2013;154(2):245-. CrossRef
    10. Amato E, Lizio D. Plastic materials as a radiation shield for beta- sources: a comparative study through Monte Carlo calculation. J Radiol Prot. 2009;29(2):239-0. CrossRef
    11. Meo SL, Cicoria G, Montini G, Bergamini C, Campanella F, Pancaldi D, et al. Radiation emission dose from patients administered 90Y-labelled radiopharmaceuticals: comparison of experimental measurements versus Monte Carlo simulation. Nucl Med Commun. 2008;29(12):1100-. CrossRef
    12. Sato Y, Yamabayashi H, Nakamura T. Internal dose distribution of 90Y beta-ray source implanted in a small phantom simulating a mouse. Radioisotopes. 2008;57(6):385-1. CrossRef
    13. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. GEANT4: a simulation toolkit. Nucl Instrum Methods Phys Res A. 2003;506:250-03. CrossRef
    14. Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, et al. Geant4 developments and applications. IEEE Trans Nucl Sci. 2006;53:270-. CrossRef
    15. J?dal L. Beta emitters and radiation protection. Acta Oncol. 2009;48(2):308-3. CrossRef
    16. Fukano S. Calculation of bremsstrahlung energy spectrum induced by beta ray. Radioisotopes. 2003;52(9):464-0. CrossRef
    17. Fukano S. Calculation of permeability of bremsstrahlung generated inside the shield. Radioisotopes. 2009;58(8):517-6. CrossRef
  • 作者单位:Taisuke Murata (1)
    Kenta Miwa (1) (2)
    Fumiyasu Matsubayashi (1)
    Kei Wagatsuma (1)
    Kenta Akimoto (1)
    Toshioh Fujibuchi (2)
    Noriaki Miyaji (1)
    Tomohiro Takiguchi (1)
    Masayuki Sasaki (2)
    Mitsuru Koizumi (1)

    1. Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
    2. Division of Medical Quantum Science, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
  • ISSN:1864-6433
文摘
Objective High-energy beta emitters such as Strontium-89 (89Sr) and Yttrium-90 (90Y) are becoming increasingly popular nuclear therapy sources in Japan for treating cancer. Various characteristics of materials must be considered when designing radiation protection device for high-energy beta emitters. We empirically measured and simulated dose equivalents of beta and bremsstrahlung radiation arising from 89Sr and 90Y radiation shielded with various materials and determined optimal shielding materials against these sources. Methods The dose equivalents of 89Sr and 90Y determined experimentally using an ionization chamber survey meter were compared with those of Monte Carlo simulations. The relative dose equivalents of beta and bremsstrahlung radiation separately transmitted by changing the thickness of acrylic, aluminum, iron, lead and tungsten shielding materials were simulated. Results Dose equivalents were consistent between the empirical measurements and the simulation to within ±5?%. Shielding ability was more effective in the order of tungsten, lead, iron, aluminum and acrylic against both 89Sr and 90Y. The amount of beta and bremsstrahlung radiation transmitted through tungsten and lead was relatively small. Although such high-density material generates much bremsstrahlung radiation, it absorbs the bremsstrahlung radiations. Conclusions Tungsten was the optimal material for efficient shielding against 89Sr and 90Y radiation and preferable among operators. The present findings provide useful information about how to define an appropriate shielding strategy for high-energy beta emitters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700