Effects of binary interactions on the color evolution of M33
详细信息    查看全文
  • 作者:XiaoYu Kang (123) kxyysl@ynao.ac.cn
    FengHui Zhang (12)
    Yu Zhang (123)
  • 关键词:M33 &#8211 ; evolution &#8211 ; binary stars
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:55
  • 期:8
  • 页码:1505-1509
  • 全文大小:326.4 KB
  • 参考文献:1. Tinsley B M. Evolution of the stars and gas in galaxies. Fundam Cosm Phys, 1980, 5: 287&#8211;388 <Occurrence Type="Bibcode"><Handle>1980FCPh....5..287T</Handle></Occurrence>
    2. Chiappini C, Matteucci F, Gratton R. The chemical evolution of the galaxy: The two-infall model. Astrophys J, 1997, 477: 765&#8211;780 <Occurrence Type="Bibcode"><Handle>1997ApJ...477..765C</Handle></Occurrence>
    3. Chiappini C, Matteucci F, Romano D. Abundance gradients and the formation of the Milky Way. Astrophys J, 2001, 554: 1044&#8211;1058 <Occurrence Type="Bibcode"><Handle>2001ApJ...554.1044C</Handle></Occurrence>
    4. Boissier S, Prantzos N. Chemo-spectrophotometric evolution of spiral galaxies—I. The model and the Milky Way. Mon Not R Astron Soc, 1999, 307: 857&#8211;876 <Occurrence Type="Bibcode"><Handle>1999MNRAS.307..857B</Handle></Occurrence>
    5. Chang R X, Hou J L, Shu C G, et al. Two-component model for the chemical evolution of the galactic disk. Astron Astrophys, 1999, 350: 38&#8211;48 <Occurrence Type="Bibcode"><Handle>1999A&A...350...38C</Handle></Occurrence>
    6. Renda A, Kawata D, Fenner Y, et al. Contrasting the chemical evolution of the Milky Way and Andromeda. Mon Not R Astron Soc, 2005, 356: 1071&#8211;1078 <Occurrence Type="Bibcode"><Handle>2005MNRAS.356.1071R</Handle></Occurrence>
    7. Matteucci F, Spitoni E, Recchi S, et al. The effect of different type Ia supernova progenitors on galactic chemical evolution. Astron Astrophys, 2009, 501: 531&#8211;538 <Occurrence Type="Bibcode"><Handle>2009A&A...501..531M</Handle></Occurrence>
    8. Hou J L, Prantzos N, Bossier S. Abundance gradients and their evolution in the Milky Way disk. Astron Astrophys, 2000, 362: 921&#8211;936 <Occurrence Type="Bibcode"><Handle>2000A&A...362..921H</Handle></Occurrence>
    9. Prantzos N, Boissier S. Chemo-spectrophotometric evolution of spiral galaxies—III. Abundance and color gradients in discs. Mon Not R Astron Soc, 2000, 313: 338&#8211;346 <Occurrence Type="Bibcode"><Handle>2000MNRAS.313..338P</Handle></Occurrence>
    10. Moll谩 M, D铆az A I. A grid of chemical evolution models as a tool to interpret spiral and irregular galaxies data. Mon Not R Astron Soc, 2005, 358: 521&#8211;543 <Occurrence Type="Bibcode"><Handle>2005MNRAS.358..521M</Handle></Occurrence>
    11. Yin J, Hou J L, Prantzos N, et al. Milky Way versus Andromeda: A tale of two disks. Astron Astrophys, 2009, 505: 497&#8211;508 <Occurrence Type="Bibcode"><Handle>2009A&A...505..497Y</Handle></Occurrence>
    12. Marcon-Uchida M M, Matteucci F, Costa R D D. Chemical evolution models for spiral disks: The Milky Way, M31, and M33. Astron Astrophys, 2010, 520: A35 <Occurrence Type="Bibcode"><Handle>2010A&A...520A..35M</Handle></Occurrence>
    13. Duquennoy A, Mayor M. Multiplicity among solar-type stars in the solar neighbourhood. II Distribution of the orbital elements in an unbiased sample. Astron Astrophys, 1991, 248: 485&#8211;524 <Occurrence Type="Bibcode"><Handle>1991A&A...248..485D</Handle></Occurrence>
    14. Richichi A, Leinert C, Jameson R, et al. New binary stars in the Taurus and Ophiuchus star-forming regions. Astron Astrophys, 1994, 287: 145&#8211;153 <Occurrence Type="Bibcode"><Handle>1994A&A...287..145R</Handle></Occurrence>
    15. Han Z W, Podsiadlowski P. The single-degenerate channel for the progenitors of Type Ia supernovae. Mon Not R Astron Soc, 2004, 350: 1301&#8211;1309 <Occurrence Type="Bibcode"><Handle>2004MNRAS.350.1301H</Handle></Occurrence>
    16. Pols O R, Marinus M. Monte-Carlo simulations of binary stellar evolution in young open clusters. Astron Astrophys, 1994, 288: 475&#8211;501 <Occurrence Type="Bibcode"><Handle>1994A&A...288..475P</Handle></Occurrence>
    17. Tian B, Deng L C, Han Z W, et al. The blue stragglers formed via mass transfer in old open clusters. Astron Astrophys, 2006, 455: 247&#8211;254 <Occurrence Type="Bibcode"><Handle>2006A&A...455..247T</Handle></Occurrence>
    18. Han Z W, Podsiadlowski P, Maxted P F L, et al. The origin of subdwarf B stars—I. The formation channels. Mon Not R Astron Soc, 2002, 336: 449&#8211;466 <Occurrence Type="Bibcode"><Handle>2002MNRAS.336..449H</Handle></Occurrence>
    19. Han Z W, Podsiadlowski P, Maxted P F L, et al. The origin of subdwarf B stars—II. Mon Not R Astron Soc, 2003, 341: 669&#8211;691 <Occurrence Type="Bibcode"><Handle>2003MNRAS.341..669H</Handle></Occurrence>
    20. Liu J Z. Gravitational wave radiation from close double white dwarfs in the galaxy. Mon Not R Astron Soc, 2009, 400: 1850&#8211;1858 <Occurrence Type="Bibcode"><Handle>2009MNRAS.400.1850L</Handle></Occurrence>
    21. Zhang F H, Li L F, Han Z W. The influence of binary interactions on infrared passbands of populations. Mon Not R Astron Soc, 2009, 396: 276&#8211;290 <Occurrence Type="Bibcode"><Handle>2009MNRAS.396..276Z</Handle></Occurrence>
    22. Zhang F H, Han Z W, Li L F, et al. The effects of ultraviolet photometry and binary interactions on photometric redshift and galaxy morphology. Mon Not R Astron Soc, 2010, 408: 1283&#8211;1306 <Occurrence Type="Bibcode"><Handle>2010MNRAS.408.1283Z</Handle></Occurrence>
    23. Han Z W, Podsiadlowski P, Lynas-Gray A E. A binary model for the UV-upturn of elliptical galaxies. Mon Not R Astron Soc, 2007, 380: 1098&#8211;1118 <Occurrence Type="Bibcode"><Handle>2007MNRAS.380.1098H</Handle></Occurrence>
    24. Zhang Y, Han Z W, Liu J Z, et al. Testing three derivative methods of stellar population synthesis models. Mon Not R Astron Soc, 2012, 421: 1678&#8211;1696 <Occurrence Type="Bibcode"><Handle>2012MNRAS.421.1678Z</Handle></Occurrence>
    25. Freedman W L, Wilson C D, Madore B F. New Cepheid distances to nearby galaxies based on BVRI CCD photometry. II The local group galaxy M33. Astrophys J, 1991, 372: 455&#8211;470 <Occurrence Type="Bibcode"><Handle>1991ApJ...372..455F</Handle></Occurrence>
    26. Garnett D R. The luminosity-metallicity relation, effective yields, and metal loss in spiral and irregular galaxies. Astrophys J, 2002, 581: 1019&#8211;1031 <Occurrence Type="Bibcode"><Handle>2002ApJ...581.1019G</Handle></Occurrence>
    27. Leroy A K, Walter F, Brinks E, et al. The star formation efficiency in nearby galaxies: Measuring where gas forms stars effectively. Astron J, 2008, 136: 2782&#8211;2845 <Occurrence Type="Bibcode"><Handle>2008AJ....136.2782L</Handle></Occurrence>
    28. Chang R X, Hou J L, Shen S Y, et al. The mass-dependent star formation histories of disk galaxies: Infall model versus observations. Astrophys J, 2010, 722: 380&#8211;387 <Occurrence Type="Bibcode"><Handle>2010ApJ...722..380C</Handle></Occurrence>
    29. Zhang F H, Han Z W, Li L F, et al. Integrated spectral energy distributions and absorption-feature indices of single stellar populations. Mon Not R Astron Soc, 2004, 350: 710&#8211;724 <Occurrence Type="Bibcode"><Handle>2004MNRAS.350..710Z</Handle></Occurrence>
    30. Zhang F H, Han Z W, Li L F, et al. Inclusion of binaries in evolutionary population synthesis. Mon Not R Astron Soc, 2005, 357: 1088&#8211;1103 <Occurrence Type="Bibcode"><Handle>2005MNRAS.357.1088Z</Handle></Occurrence>
    31. Heyer M K, Corbelli E, Schneider S E, et al. The molecular gas distribution and Schmidt Law of M33. Astrophys J, 2004, 602: 723&#8211;729 <Occurrence Type="Bibcode"><Handle>2004ApJ...602..723H</Handle></Occurrence>
    32. Boissier S, de Gil P A, Boselli A, et al. Radial variation of attenuation and star formation in the largest late-type disks observed with GALEX. Astrophys J Suppl Ser, 2007, 173: 524&#8211;537 <Occurrence Type="Bibcode"><Handle>2007ApJS..173..524B</Handle></Occurrence>
    33. Verley S, Corbelli E, Giovanardi C, et al. Star formation in M33: Multiwavelength signatures across the disk. Astron Astrophys, 2009, 493: 453&#8211;466 <Occurrence Type="Bibcode"><Handle>2009A&A...493..453V</Handle></Occurrence>
    34. Corbelli E. Dark matter and visible baryons in M33. Mon Not R Astron Soc, 2003, 342: 199&#8211;207 <Occurrence Type="Bibcode"><Handle>2003MNRAS.342..199C</Handle></Occurrence>
    35. Gratier P, Braine J, Rodriguez-Fernandez N J, et al. Molecular and atomic gas in the local group galaxy M33. Astron Astrophys, 2010, 522: A3 <Occurrence Type="Bibcode"><Handle>2010A&A...522A...3G</Handle></Occurrence>
    36. Mu帽oz-Mateos J C, de Gil P A, Bossier S, et al. Specific star formation rate profiles in nearby galaxies: Quantifying the inside-out formation of disks. Astrophys J, 2007, 658: 1006&#8211;1026 <Occurrence Type="Bibcode"><Handle>2007ApJ...658.1006M</Handle></Occurrence>
    37. Regan M W, Vogel S N. The near-infrared structure of M33. Astrophys J, 1994, 434: 536&#8211;545 <Occurrence Type="Bibcode"><Handle>1994ApJ...434..536R</Handle></Occurrence>
    38. Kroupa P, Tout C A, Gilmore G. The distribution of low-mass stars in the galactic disc. Mon Not R Astron Soc, 1993, 262: 545&#8211;587 <Occurrence Type="Bibcode"><Handle>1993MNRAS.262..545K</Handle></Occurrence>
    39. Asplund M, Grevesse N, Sauval A J, et al. The chemical composition of the sun. Ann Rev Astron Astrophys, 2009, 47: 481&#8211;522 <Occurrence Type="Bibcode"><Handle>2009ARA&A..47..481A</Handle></Occurrence>
  • 作者单位:1. National Astronomical Observatories, Yunnan Observatory, Chinese Academy of Sciences, Kunming, 650011 China2. Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming, 650011 China3. Graduate University of the Chinese Academy of Sciences, Beijing, 100049 China
  • ISSN:1869-1927
文摘
In this work, predictions of the spectral energy distribution from populations of single and binary stars are incorporated into a galactic chemical and color evolution model to explore the significance of the effects of the binary interactions on the color evolution of M33. We first constructed a model without binary interactions, and the model is able to reproduce most of the available observational constraints on the distribution of stellar parameters. We then run simulations with the same set of model parameters but with binary interactions considered. By comparing the results for the populations with and without binary interactions, we find that the inclusion of binary interactions makes the surface brightness greater (∼0.1 mag arcsec−2) in FUV-band but smaller (∼0.7 mag arcsec−2) in K-band, while it results in the FUV-K color bluer (∼0.8 mag). To reproduce the observations, a model that considers the binary interactions should make more gas fall onto the disk in the early time of the galaxy evolution, or increase the total stellar mass, or both.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700