Spatio-temporal stiffness optimization with switching dynamics
详细信息    查看全文
文摘
We address the optimal control problem of robotic systems with variable stiffness actuation (VSA) including switching dynamics and discontinuous state transitions. Our focus in this paper is to consider dynamic tasks that have multiple phases of movement, contacts and impacts with the environment with a requirement of exploiting passive dynamics of the system. By modelling such tasks as a hybrid dynamical system with time-based switching, we develop a systematic methodology to simultaneously optimize control commands, time-varying stiffness profiles and temporal aspect of the movement such as switching instances and total movement duration to exploit the benefits of VSA. Numerical evaluations on a brachiating robot driven with VSA and a hopping robot equipped with variable stiffness springs demonstrate the effectiveness of the proposed approach. Furthermore, hardware experiments on a two-link brachiating robot with VSA highlight the applicability of the proposed framework in a challenging task of brachiation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700