Reductive coupling of carbon monoxide to glycolaldehyde and hydroxypyruvaldehyde polyanions in binuclear cyclopentadienyl lanthanum and lutetium derivatives: analogies to cyclooctatetraene thorium chemistry
详细信息    查看全文
  • 作者:Huidong Li ; Hao Feng ; Weiguo Sun ; Qunchao Fan…
  • 关键词:Carbon monoxide coupling ; Lanthanides ; Lutetium ; Lanthanum ; Cyclopentadienylmetal derivatives ; Reductive coupling ; Glycolaldehyde ; Hydroxypyruvaldehyde ; Density functional theory
  • 刊名:Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:135
  • 期:1
  • 全文大小:859 KB
  • 参考文献:1.Xie H, Wang J, Qin Z, Shi L, Tang Z, Xing X (2014) J Phys Chem A 118:9380CrossRef
    2.Ricks AM, Gagliardi L, Duncan MA (2010) J Am Chem Soc 132:15905CrossRef
    3.Gardner BM, Liddle ST (2013) Eur J Inorg Chem 2013(22–23):3753CrossRef
    4.La Pierre HS, Meyer K (2014) Prog Inorg Chem 58:303CrossRef
    5.Arnold PL, Turner ZR, Bellabarba RM, Tooze RP (2011) Chem Sci 2:77CrossRef
    6.Gardner BM, Stewart JC, Davis AL, McMaster J, Lewis W, Blake AJ, Liddle ST (2012) Proc Natl Acad Sci USA 109:9265CrossRef
    7.Summerscales OT, Cloke FGN, Hitchcock PB, Green JC, Hazari N (2006) Science 311:829CrossRef
    8.Summerscales OT, Cloke FGN, Hitchcock PB, Green JC, Hazari N (2006) J Am Chem Soc 128:9602CrossRef
    9.Frey AS, Cloke FGN, Hitchcock PB, Day IJ, Green JC, Aitken G (2008) J Am Chem Soc 130:13681
    10.Aitken G, Hazari N, Frey ASP, Cloke FGN, Summerscales OT, Green JC (2011) Dalton Trans 40:11080CrossRef
    11.McKay D, Frey ASP, Green JC, Cloke FGN, Maron L (2012) Chem Comm 48:4118CrossRef
    12.Li H, Feng H, Sun W, King RB, Schaefer HF (2013) Inorg Chem 2:6893CrossRef
    13.Li H, Feng H, Sun W, King RB, Schaefer HF (2014) New J Chem 38:6031CrossRef
    14.Federoňko M, Temkovic P, Konigstein J, Kováčik V, Tvaroška I (1980) Carbohydr Res 87:35CrossRef
    15.Evans WL, Waring CE (1926) J Am Chem Soc 48:2678CrossRef
    16.Hesse G, Ramisch F, Renner K (1956) Chem Ber 89:2137CrossRef
    17.Reeves HC, Ajl SJJ (1965) Biol Chem 240:569
    18.Brynda M, Gagliardi L, Widmark PO, Power PP, Roos BO (2006) Angew Chem Int Ed 45:3804CrossRef
    19.Sieffert N, Bühl M (2010) J Am Chem Soc 132:8056CrossRef
    20.Schyman P, Lai W, Chen H, Wang Y, Shaik S (2011) J Am Chem Soc 133:7977CrossRef
    21.Adams RD, Pearl WC, Wong YO, Zhang Q, Hall MB, Walensky JR (2011) J Am Chem Soc 133:12994CrossRef
    22.Lonsdale R, Olah J, Mulholland AJ, Harvey JN (2011) J Am Chem Soc 133:15464CrossRef
    23.Crawford L, Cole-Hamilton DJ, Drent E, Bühl M (2014) Chem Eur J 20:13923CrossRef
    24.Zhekova H, Krykunov M, Autschbach J, Ziegler T (2014) J Chem Theory Comput 10:3299CrossRef
    25.Becke AD (1988) Phys Rev A 38:3098CrossRef
    26.Perdew JP (1986) Phys Rev B 33:882CrossRef
    27.Tsipis AC, Kefalidis CE, Tsipis CA (2008) J Am Chem Soc 130:9144CrossRef
    28.Infante I, Raab J, Lyon JT, Liang B, Andrews L, Gagliardi LJ (2007) Phys Chem A 111:11996CrossRef
    29.Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101CrossRef
    30.Zhao Y, Truhlar DG (2008) Theory Chem Acc 120:215CrossRef
    31.Cao X, Dolg M (2001) J Chem Phys 115:7348CrossRef
    32.Cao X, Dolg M (2002) J Mol Struct 581:139CrossRef
    33.Schaefer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571CrossRef
    34.Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829CrossRef
    35.Frisch MJ et al (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford
    36.Papas BN, Schaefer HF (2006) J Mol Struct 768:275CrossRef
    37.Sunderlin LS, Wang D, Squires RR (1993) J Am Chem Soc 115:12060CrossRef
  • 作者单位:Huidong Li (1)
    Hao Feng (1)
    Weiguo Sun (1)
    Qunchao Fan (1)
    R. Bruce King (2)
    Henry F. Schaefer III (2)
    Yinxue Liu (1)

    1. Research Center for Advanced Computation, School of Science, Xihua University, Chengdu, 610039, China
    2. Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, 30602, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Theoretical and Computational Chemistry
    Inorganic Chemistry
    Organic Chemistry
    Physical Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2234
文摘
Cloke and coworkers have recently (2006–2012) shown that reaction of carbon monoxide with organouranium compounds results in reductive coupling to yield the oligomeric anions C n O n 2− (n = 2, 3, 4). In order to explore the possibilities of similar reductive coupling of carbon monoxide in organolanthanide systems, the structures and thermochemistry of the cyclopentadienyllanthanide carbonyls Cp2Ln2(CO) n (n = 2, 3, 4, 5) have been investigated using lanthanum and lutetium, which are diamagnetic in the favored +3 oxidation state. All of these Cp2Ln2(CO) n structures have long Ln···Ln distances exceeding 4.2 Å for La and 3.6 Å for Lu, indicating the lack of direct metal–metal bonding and suggesting the normally favored +3 oxidation state for these lanthanides. In the dicarbonyls Cp2Ln2(CO)2, the two CO groups couple to form a bridging µ-C2O2 4− ligand, which can be derived by removal of four protons from glycolaldehyde (hydroxyacetaldehyde). Similarly, in the tricarbonyls, the three CO groups couple to form a bridging µ-C3O3 4− ligand, which can be derived by removal of four protons from hydroxypyruvaldehyde. However, the lowest energy structures for the tetracarbonyls Cp2Ln2(CO)4 (by more than 13 kcal/mol) have four separate η2-µ-CO ligands bonded to the central Ln2 unit through both their carbon and oxygen atoms. Thermochemistry of the Cp2Ln2(CO) n systems suggests viability of Cp2Ln2(CO)2 and Cp2Ln2(CO)4. However, Cp2Ln2(CO)3 is predicted to be disfavored relative to disproportionation into Cp2Ln2(CO)2 + Cp2Ln2(CO)4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700