The Effect of Discharge, Tides, and Wind on Lift-Off Turbulence
详细信息    查看全文
  • 作者:Jianfeng Wang ; Daniel G. MacDonald ; Philip M. Orton ; Kelly Cole…
  • 关键词:Turbulent kinetic energy production ; River plume ; Lift ; off zone ; ADCP variance method
  • 刊名:Estuaries and Coasts
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:38
  • 期:6
  • 页码:2117-2131
  • 全文大小:4,095 KB
  • 参考文献:Adams, E., and K. Stolzenbach. 1977. Analysis of a buoyant surface discharge over a shallow sloping bottom. In Proceedings of the XVII International Association of Hydraulic Research (IAHR) Congress, 363鈥?70.
    Armi, L., and D. Farmer. 1986. Maximal two-layer exchange through a contraction with barotropic net flow. Journal of Fluid Mechanics 164: 27鈥?1.CrossRef
    Atkinson, J.F. 1993. Detachment of buoyant surface jets discharged on slope. Journal of Hydraulic Engineering 119: 878鈥?94.CrossRef
    Chen, F., D.G. MacDonald, and R.D. Hetland. 2009. Lateral spreading of a near-field river plume: observations and numerical simulations. J. Geophys. Res 114: C07013.
    Chen, S.N., W.R. Geyer, D.K. Ralston, and J.A. Lerczak. 2011. Estuarine exchange flow quantified with isohaline coordinates: contrasting long and short estuaries. Journal of Physical Oceanography 42: 748鈥?63.CrossRef
    Csanady, G. 1978. Wind effects on surface to bottom fronts. Journal of Geophysical Research 83: 4633鈥?640.CrossRef
    Fischer, H.B. 1972. Mass transport mechanisms in partially stratified estuaries. Journal of Fluid Mechanics 53: 671鈥?87.CrossRef
    Fong, D.A., and W.R. Geyer. 2001. Response of a river plume during an upwelling favorable wind event. Journal of Geophysical Research 106: 1067鈥?084.CrossRef
    Fong, D.A., and W.R. Geyer. 2002. The alongshore transport of freshwater in a surface-trapped river plume. Journal of Physical Oceanography 32: 957鈥?72.CrossRef
    Geyer, W.R., and J.D. Smith. 1987. Shear instability in a highly stratified estuary. Journal of Physical Oceanography 17: 1668鈥?679.CrossRef
    Hasselmann, K., T. Barnett, E. Bouws, H. Carlson, D. Cartwright, K. Enke, J. Ewing, H. Gienapp, D. Hasselmann, and P. Kruseman. 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP).
    Hetland, R.D. 2005. Relating river plume structure to vertical mixing. Journal of Physical Oceanography 35: 1667鈥?688.CrossRef
    Hetland, R.D., and D.G. MacDonald. 2008. Spreading in the near-field Merrimack River plume. Ocean Modelling 21: 12鈥?1.CrossRef
    Hickey, B.M., and N.S. Banas. 2003. Oceanography of the US Pacific Northwest coastal ocean and estuaries with application to coastal ecology. Estuaries and Coasts 26: 1010鈥?031.CrossRef
    Horner-Devine, A.R., D.A. Jay, P.M. Orton, and E.Y. Spahn. 2009. A conceptual model of the strongly tidal Columbia River plume. Journal of Marine Systems 78: 460鈥?75.CrossRef
    Horner-Devine, A.R., R.D. Hetland, and D.G. MacDonald. 2015. Mixing and transport in coastal river plumes. Annual Review of Fluid Mechanics 47 (Volume publication date December 2015)
    Howard, L.N. 1961. Note on a paper of John W. Miles. Journal of Fluid Mechanics 10: 509鈥?12.CrossRef
    Jay, D.A., and J. Smith. 1990. Circulation, density distribution and neap-spring transitions in the Columbia River Estuary. Progress in Oceanography 25: 81鈥?12.CrossRef
    Jirka, G.H., and M. Arita. 1987. Density currents or density wedges: boundary-layer influence and control methods. Journal of Fluid Mechanics 177: 187鈥?06.CrossRef
    Jirka, G.H., K.D. Stolzenbach, and E.E. Adams. 1981. Buoyant surface jets. Journal of the Hydraulics Division 107: 1467鈥?487.
    Kakoulaki, G., D.G. MacDonald, and A.R. Horner-Devine. 2014. The role of wind in the near- and mid-field of a river plume. Geophysical Research Letters 41: 5132鈥?138.CrossRef
    Kilcher, L.F., and J.D. Nash. 2010. Structure and dynamics of the Columbia River tidal plume front. Journal of Geophysical Research 115, C05S90.
    Kilcher, L.F., J.D. Nash, and J.N. Moum. 2012. The role of turbulence stress divergence in decelerating a river plume. Journal of Geophysical Research: Oceans (1978鈥?012) 117: C05032.
    Kirincich, A.R., S.J. Lentz, and G.P. Gerbi. 2010. Calculating Reynolds stresses from ADCP measurements in the presence of surface gravity waves using the cospectra-fit method. Journal of Atmospheric and Oceanic Technology 27: 889鈥?07.CrossRef
    Kirincich, A.R., and J.H. Rosman. 2011. A comparison of methods for estimating Reynolds stress from ADCP measurements in wavy environments. Journal of Atmospheric and Oceanic Technology 28: 1539鈥?553.CrossRef
    Kudela, R.M., and T.D. Peterson. 2009. Influence of a buoyant river plume on phytoplankton nutrient dynamics: What controls standing stocks and productivity? Journal of Geophysical Research 114: C00B11.
    Lentz, S. 2004. The response of buoyant coastal plumes to upwelling-favorable winds. Journal of Physical Oceanography 34: 2458鈥?469.CrossRef
    Lohan, M.C., and K.W. Bruland. 2006. Importance of vertical mixing for additional sources of nitrate and iron to surface waters of the Columbia River plume: implications for biology. Marine Chemistry 98: 260鈥?73.CrossRef
    Lu, Y., and R.G. Lueck. 1999. Using a broadband ADCP in a tidal channel. Part II: turbulence. Journal of Atmospheric and Oceanic Technology 16: 1568鈥?579.CrossRef
    Lu, Y., R.G. Lueck, and D. Huang. 2000. Turbulence characteristics in a tidal channel. Journal of Physical Oceanography 30: 855鈥?67.CrossRef
    MacCready, P., and W.R. Geyer. 2010. Advances in estuarine physics. Annual Review of Marine Science 2: 35鈥?8.CrossRef
    MacDonald, D.G., J. Carlson, and L. Goodman. 2013. On the heterogeneity of stratified-shear turbulence: observations from a near-field river plume. Journal of Geophysical Research, Oceans 118: 6223鈥?237.CrossRef
    MacDonald, D.G., and F. Chen. 2012. Enhancement of turbulence through lateral spreading in a stratified-shear flow: development and assessment of a conceptual model. Journal of Geophysical Research 117: C05025.
    MacDonald, D.G., and W.R. Geyer. 2004. Turbulent energy production and entrainment at a highly stratified estuarine front. J. Geophys. Res 109: C05004.
    MacDonald, D.G., and W.R. Geyer. 2005. Hydraulic control of a highly stratified estuarine front*. Journal of Physical Oceanography 35: 374鈥?87.CrossRef
    MacDonald, D.G., L. Goodman, and R.D. Hetland. 2007. Turbulent dissipation in a near-field river plume: a comparison of control volume and microstructure observations with a numerical model. J. Geophys. Res 112: C07026.
    McCabe, R.M., P. MacCready, and B.M. Hickey. 2009. Ebb-tide dynamics and spreading of a large river plume*. Journal of Physical Oceanography 39: 2839鈥?856.CrossRef
    Miles, J.W. 1961. On the stability of heterogeneous shear flows. Journal of Fluid Mechanics 10: 496鈥?08.CrossRef
    Nash, J.D., L.F. Kilcher, and J.N. Moum. 2009. Structure and composition of a strongly stratified, tidally pulsed river plume. Journal of Geophysical Research 114: C00B12.
    Orton, P.M., and M. Visbeck. 2009. Variability of internally generated turbulence in an estuary, from 100聽days of continuous observations. Continental Shelf Research 29: 61鈥?7.
    Orton, P.M., C.J. Zappa, and W.R. McGillis. 2010. Tidal and atmospheric influences on near-surface turbulence in an estuary. Journal of Geophysical Research 115: C12029.
    Pierson Jr., W.J., and L. Moskowitz. 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii. Journal of Geophysical Research 69: 5181鈥?190.CrossRef
    Rippeth, T.P., J.H. Simpson, E. Williams, and M.E. Inall. 2003. Measurement of the rates of production and dissipation of turbulent kinetic energy in an energetic tidal flow: Red Wharf Bay revisited. Journal of Physical Oceanography 33: 1889鈥?901.CrossRef
    Scully, M.E., C. Friedrichs, and J. Brubaker. 2005. Control of estuarine stratification and mixing by wind-induced straining of the estuarine density field. Estuaries and Coasts 28: 321鈥?26.CrossRef
    Simpson, J.H., J. Brown, J. Matthews, and G. Allen. 1990. Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries 13: 125鈥?32.CrossRef
    Simpson, J.H., H. Burchard, N.R. Fisher, and T.P. Rippeth. 2002. The semi-diurnal cycle of dissipation in a ROFI: model-measurement comparisons. Continental Shelf Research 22: 1615鈥?628.CrossRef
    Stacey, M.T., S.G. Monismith, and J.R. Burau. 1999. Measurements of Reynolds stress profiles in unstratified tidal flow. Journal of Geophysical Research 104: 10933鈥?0949.CrossRef
    Terray, E., M. Donelan, Y. Agrawal, W. Drennan, K. Kahma, A. Williams, P. Hwang, and S. Kitaigorodskii. 1996. Estimates of kinetic energy dissipation under breaking waves. Journal of Physical Oceanography 26: 792鈥?07.CrossRef
    Wang, D.-P. 1979. Wind-driven circulation in the Chesapeake Bay, Winter, 1975. Journal of Physical Oceanography 9: 564鈥?72.CrossRef
    Williams, E., and J.H. Simpson. 2004. Uncertainties in estimates of Reynolds stress and TKE production rate using the ADCP variance method. Journal of Atmospheric and Oceanic Technology 21: 347鈥?57.CrossRef
    Wright, L., and J.M. Coleman. 1971. Effluent expansion and interfacial mixing in the presence of a salt wedge, Mississippi River delta. Journal of Geophysical Research 76: 8649鈥?661.CrossRef
    Yankovsky, A.E., and D.C. Chapman. 1997. A simple theory for the fate of buoyant coastal discharges*. Journal of Physical Oceanography 27: 1386鈥?401.CrossRef
    Yuan, Y., and A.R. Horner-Devine. 2013. Laboratory investigation of the impact of lateral spreading on buoyancy flux in a river plume. Journal of Physical Oceanography 43: 2588鈥?610.CrossRef
  • 作者单位:Jianfeng Wang (1) (5)
    Daniel G. MacDonald (2)
    Philip M. Orton (3)
    Kelly Cole (4)
    Jian Lan (5)

    1. Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
    5. Physical Oceanography Laboratory, Ocean University of China, Qingdao, Shandong, China
    2. Department of Civil and Environmental Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
    3. Davidson Laboratory, Stevens Institute of Technology, Hoboken, NJ, USA
    4. Department of Oceanography, Texas A&M University, College Station, TX, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Ecology
    Geosciences
    Environmental Management
    Nature Conservation
  • 出版者:Springer New York
  • ISSN:1559-2731
文摘
Data from three deployments of a 1200 kHz moored Acoustic Doppler Current Profiler (ADCP) were used to study the factors affecting turbulent kinetic energy (TKE) production in the lift-off zone of a mid-sized river plume (Merrimack River, Newburyport, MA) during the spring freshets of 2007, 2010, and 2011. TKE production was estimated from the ADCP data, during periods of minimal wave activity, using the variance method, with significant variability in plume thickness and TKE production observed between ebbs. Correlations with this observed variability and the primary environmental variables, such as river flow, wind speed/direction, and tidal range, were noted. On the basis of these observations, we quantify the contribution of these forcing mechanisms to the observed TKE production using an empirical approach based on the marginal value of the discharge Froude number (which is scaled from the environmental variables) above a critical value of one. The resulting regression provides a means for estimating TKE production in the lift-off zone as a function of only the environmental variables, and produces results consistent with previous observations from other turbulence measurement techniques in the Merrimack plume. The regression also provides an indication of the relative importance of the various forcing mechanisms, and suggests that onshore (east) winds and river discharge are the most important factors in controlling TKE production in the Merrimack plume, with tidal range of lesser significance. Keywords Turbulent kinetic energy production River plume Lift-off zone ADCP variance method

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700