Adipose tissue behavior is distinctly regulated by neighboring cells and fluid flow stress: a possible role of adipose tissue in peritoneal fibrosis
详细信息    查看全文
  • 作者:Shigehisa Aoki (1)
    Kazuma Udo (2)
    Hiroyuki Morimoto (3)
    Satoshi Ikeda (1)
    Toshiaki Takezawa (4)
    Kazuyoshi Uchihashi (1)
    Aki Nishijima-Matsunobu (1)
    Mitsuru Noguchi (2)
    Hajime Sugihara (5)
    Shuji Toda (1)
  • 关键词:Adipogenesis ; Endothelial cell ; Fluid flow stress ; Mesenteric adipose tissue ; Mesothelial cell ; Peritoneal fibrosis
  • 刊名:Journal of Artificial Organs
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:16
  • 期:3
  • 页码:322-331
  • 全文大小:913KB
  • 参考文献:1. Burkart JM. Peritoneal dialysis should be considered as the first line of renal replacement therapy for most ESRD patients. Blood Purif. 2001;19:179鈥?4. CrossRef
    2. Chaudhary K, Sangha H, Khanna R. Peritoneal dialysis first: rationale. Clin J Am Soc Nephrol. 2011;6:447鈥?6. CrossRef
    3. Grassmann A, Gioberge S, Moeller S, Brown G. ESRD patients in 2004: global overview of patient numbers, treatment modalities and associated trends. Nephrol Dial Transpl. 2005;20:2587鈥?3. CrossRef
    4. Bradley JA, Hamilton DN, McWhinnie DL, Briggs JD, Junor BJ. Sclerosing peritonitis after CAPD. Lancet. 1983;2:572鈥?. CrossRef
    5. Oreopoulos DG, Khanna R, Wu G. Sclerosing obstructive peritonitis after CAPD. Lancet. 1983;2:409. CrossRef
    6. Miyazaki M, Yuzawa Y. The role of peritoneal fibrosis in encapsulating peritoneal sclerosis. Perit Dial Int. 2005;25:S48鈥?6.
    7. Mactier RA. The spectrum of peritoneal fibrosing syndromes in peritoneal dialysis. Adv Perit Dial. 2000;16:223鈥?.
    8. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med. 2003;348:403鈥?3. CrossRef
    9. Margetts PJ, Bonniaud P, Liu L, Hoff CM, Holmes CJ, West-Mays JA, et al. Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol. 2005;16:425鈥?6. CrossRef
    10. Devuyst O, Margetts PJ, Topley N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol. 2010;21:1077鈥?5. CrossRef
    11. Goodlad C, Brown EA. Encapsulating peritoneal sclerosis: what have we learned? Semin Nephrol. 2011;31:183鈥?8. CrossRef
    12. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279鈥?5. CrossRef
    13. Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54:132鈥?1. CrossRef
    14. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells. 2006;24:376鈥?5. CrossRef
    15. Di Paolo N, Sacchi G. Atlas of peritoneal histology. Perit Dial Int. 2000;20:S5鈥?6.
    16. Charriere G, Cousin B, Arnaud E, Andre M, Bacou F, Penicaud L, et al. Preadipocyte conversion to macrophage. Evidence of plasticity. J Biol Chem. 2003;278:9850鈥?. CrossRef
    17. Sonoda E, Aoki S, Uchihashi K, Soejima H, Kanaji S, Izuhara K, et al. A new organotypic culture of adipose tissue fragments maintains viable mature adipocytes for a long term, together with development of immature adipocytes and mesenchymal stem cell-like cells. Endocrinology. 2008;149:4794鈥?. CrossRef
    18. Sugihara H, Funatsumaru S, Yonemitsu N, Miyabara S, Toda S, Hikichi Y. A simple culture method of fat cells from mature fat tissue fragments. J Lipid Res. 1989;30:1987鈥?5.
    19. Aoki S, Makino J, Nagashima A, Takezawa T, Nomoto N, Uchihashi K, et al. Fluid flow stress affects peritoneal cell kinetics: possible pathogenesis of peritoneal fibrosis. Perit Dial Int. 2011;31:466鈥?6. CrossRef
    20. Aoki S, Ikeda S, Takezawa T, Kishi T, Makino J, Uchihashi K, et al. Prolonged effect of fluid flow stress on the proliferative activity of mesothelial cells after abrupt discontinuation of fluid streaming. Biochem Biophys Res Commun. 2011;416:391鈥?. CrossRef
    21. Anan M, Uchihashi K, Aoki S, Matsunobu A, Ootani A, Node K, et al. A promising culture model for analyzing the interaction between adipose tissue and cardiomyocytes. Endocrinology. 2011;152:1599鈥?05. CrossRef
    22. Nomoto-Kojima N, Aoki S, Uchihashi K, Matsunobu A, Koike E, Ootani A, et al. Interaction between adipose tissue stromal cells and gastric cancer cells in vitro. Cell Tissue Res. 2011;344:287鈥?8. CrossRef
    23. Aoki S, Takezawa T, Uchihashi K, Sugihara H, Toda S. Non-skin mesenchymal cell types support epidermal regeneration in a mesenchymal stem cell or myofibroblast phenotype-independent manner. Pathol Int. 2009;59:368鈥?5. CrossRef
    24. Higashi Y, Abe K, Kuzumoto T, Hara T, Miyamoto K, Murata T, et al. Characterization of peritoneal dialysis effluent-derived cells: diagnosis of peritoneal integrity. J Artif Organs. 2012. doi:10.1007/s10047-012-0673-1 .
    25. Kruitwagen RF, Poels LG, Willemsen WN, Jap PH, de Ronde IJ, Hanselaar TG, et al. Immunocytochemical markerprofile of endometriotic epithelial, endometrial epithelial, and mesothelial cells: a comparative study. Eur J Obstet Gynecol Reprod Biol. 1991;41:215鈥?3. CrossRef
    26. Friedman JM. Obesity in the new millennium. Nature. 2000;404:632鈥?.
    27. Myers MG Jr. Leptin receptor signaling and the regulation of mammalian physiology. Recent Prog Horm Res. 2004;59:287鈥?04. CrossRef
    28. Lai KN, Leung JC. Peritoneal adipocytes and their role in inflammation during peritoneal dialysis. Mediat Inflamm. 2010;2010:495416. CrossRef
    29. Bradley JA, McWhinnie DL, Hamilton DN, Starnes F, Macpherson SG, Seywright M, et al. Sclerosing obstructive peritonitis after continuous ambulatory peritoneal dialysis. Lancet. 1983;2:113鈥?. CrossRef
    30. Dobbie JW. Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int. 1992;12:14鈥?7.
    31. Leung JC, Chan LY, Tang SC, Chu KM, Lai KN. Leptin induces TGF-beta synthesis through functional leptin receptor expressed by human peritoneal mesothelial cell. Kidney Int. 2006;69:2078鈥?6. CrossRef
    32. Kiyonaga H, Doi Y, Karasaki Y, Arashidani K, Itoh H, Fujimoto S. Expressions of endothelin-1, fibronectin, and interleukin-1alpha of human umbilical vein endothelial cells under prolonged culture. Med Electron Microsc. 2001;34:41鈥?3. CrossRef
    33. Harrison DG, Cai H. Endothelial control of vasomotion and nitric oxide production. Cardiol Clin. 2003;21:289鈥?02. CrossRef
    34. Busse R, Fleming I. Vascular endothelium and blood flow. Handb Exp Pharmacol. 2006;176(Pt 2):43鈥?8.
    35. Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002;5:561鈥?. CrossRef
    36. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840鈥?. CrossRef
    37. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91:327鈥?7. CrossRef
    38. Achike FI, To NH, Wang H, Kwan CY. Obesity, metabolic syndrome, adipocytes and vascular function: a holistic viewpoint. Clin Exp Pharmacol Physiol. 2011;38:1鈥?0. CrossRef
    39. Aoki S, Toda S, Sakemi T, Sugihara H. Coculture of endothelial cells and mature adipocytes actively promotes immature preadipocyte development in vitro. Cell Struct Funct. 2003;28:55鈥?0. CrossRef
    40. Fernstrom A, Hylander B, Moritz A, Jacobsson H, Rossner S. Increase of intra-abdominal fat in patients treated with continuous ambulatory peritoneal dialysis. Perit Dial Int. 1998;18:166鈥?1.
    41. Heimburger O. Obesity on PD patients: causes and management. Contrib Nephrol. 2003;140:91鈥?.
    42. Sugihara H, Yonemitsu N, Miyabara S, Toda S. Proliferation of unilocular fat cells in the primary culture. J Lipid Res. 1987;28:1038鈥?5.
  • 作者单位:Shigehisa Aoki (1)
    Kazuma Udo (2)
    Hiroyuki Morimoto (3)
    Satoshi Ikeda (1)
    Toshiaki Takezawa (4)
    Kazuyoshi Uchihashi (1)
    Aki Nishijima-Matsunobu (1)
    Mitsuru Noguchi (2)
    Hajime Sugihara (5)
    Shuji Toda (1)

    1. Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
    2. Department of Urology, Faculty of Medicine, Saga University, Saga, Japan
    3. Department of Anatomy, University of Occupational and Environmental Health, Fukuoka, Japan
    4. Division of Animal Sciences, National Institute of Agrobiological Sciences, Ibaraki, Japan
    5. Department of Physical Therapy, International University of Health and Welfare, Fukuoka, Japan
  • ISSN:1619-0904
文摘
Adipose tissue, together with the mesothelial layer and microvessels, is a major component of the mesenteric peritoneum, and the mesenterium is a target site for peritoneal fibrosis. Adipose tissue has been speculated to play a role in peritoneal dialysis (PD)-related fibrosis, but the precise cellular kinetics of adipose tissue during this process remain to be determined. To clarify this critical issue, we analyzed the kinetics of adipose tissue using a novel peritoneal reconstruction model in which the effects of mesothelial cells or endothelial cells could be identified. Adipose tissue was co-cultured with mesothelial cells or endothelial cells in a combined organ culture and fluid flow stress culture system. Spindle mesenchymal cells and immature adipocytes derived from adipose tissue were characterized by immunohistochemistry. Adipose tissue fragments cultured in this system yielded many spindle mesenchymal cells in non-co-culture conditions. However, the number of spindle mesenchymal cells emerging from adipose tissue was reduced in co-culture conditions with a covering layer of mesothelial cells. Mesothelial cells co-cultured in the separated condition did not inhibit the emergence of spindle mesenchymal cells from adipose tissue. Interestingly, endothelial cells promoted the emergence of lipid-laden immature adipocytes from adipose tissue under fluid flow stress. We have demonstrated that adipose tissue behavior is not only regulated by mesothelial cells and endothelial cells under fluid flow stress, but is also involved in fibrosis and fat mass production in the peritoneum. Our findings suggest that adipose tissue is a potential source of cells for peritoneal fibrosis caused by PD therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700