Temperature sensing using red fluorescent protein
详细信息    查看全文
  • 作者:Kanagavel Deepankumar…
  • 关键词:temperature sensor ; mRFP1 ; 4 ; fluoroproline ; non ; canonical amino acid incorporation ; thermal stability
  • 刊名:Biotechnology and Bioprocess Engineering
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:20
  • 期:1
  • 页码:67-72
  • 全文大小:269 KB
  • 参考文献:1. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G., Thompson, C. B. (2008) The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7: pp. 11-20 CrossRef
    2. Nakamura, T., Matsuoka, I. (1978) Calorimetric studies of heat of respiration of mitochondria. J. Biochem. 84: pp. 39-46
    3. Lowell, B. B., Spiegelman, B. M. (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404: pp. 652-660
    4. Kallerhoff, M., Karnebogen, M., Singer, D., Dettenbach, A., Gralher, U., Ringert, R. H. (1996) Microcalorimetric measurements carried out on isolated tumorous and nontumorous tissue samples from organs in the urogenital tract in comparison to histological and impulse-cytophotometric investigations. Urol. Res. 24: pp. 83-91 CrossRef
    5. Ye, F., Wu, C., Jin, Y., Chan, Y. H., Zhang, X., Chiu, D. T. (2011) Ratiometric temperature sensing with semiconducting polymer dots. J. Am. Chem. Soc. 133: pp. 8146-8149 CrossRef
    6. Chen, Y. Y., Wood, A. W. (2009) Application of a temperature-dependent fluorescent dye (Rhodamine B) to the measurement of radiofrequency radiation-induced temperature changes in biological samples. Bioelectromagnetics 30: pp. 583-590 CrossRef
    7. Yang, J. M., Yang, H., Lin, L. (2011) Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. ACS Nano. 5: pp. 5067-5071 CrossRef
    8. Biju, V., Makita, Y., Sonoda, A., Yokoyama, H., Baba, Y., Ishikawa, M. (2005) Temperature-sensitive photoluminescence of CdSe quantum dot clusters. J. Phys. Chem. B. 109: pp. 13899-13905 CrossRef
    9. Vetrone, F., Naccache, R., Zamarrón, A., Juarranz de la Fuente, A., Sanz-Rodríguez, F., Martinez Maestro, L., Martín Rodriguez, E., Jaque, D., García Solé, J., Capobianco, J. A. (2010) Temperature sensing using fluorescent nanothermometers. ACS Nano. 4: pp. 3254-3258 CrossRef
    10. Gota, C., Okabe, K., Funatsu, T., Harada, Y., Uchiyama, S. (2009) Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J. Am. Chem. Soc. 131: pp. 2766-2767 CrossRef
    11. Albers, A. E., Chan, E. M., McBride, P. M., Ajo-Franklin, C. M., Cohen, B. E., Helms, B. A. (2012) Dual-emitting quantum dot/quantum rod-based nanothermometers with enhanced response and sensitivity in live cells. J. Am. Chem. Soc. 134: pp. 9565-9568 CrossRef
    12. McLaurin, E. J., Vlaskin, V. A., Gamelin, D. R. (2011) Water-soluble dual-emitting nanocrystals for ratiometric optical thermometry. J. Am. Chem. Soc. 133: pp. 14978-14980 CrossRef
    13. Donner, J. S., Thompson, S. A., Kreuzer, M. P., Baffou, G., Quidant, R. (2012) Mapping intracellular temperature using green fluorescent protein. Nano Lett. 12: pp. 2107-2111 CrossRef
    14. Donner, J. S., Thompson, S. A., Ortega, C. A., Morales, J., Rico, L. G., Santos, S. I. C. O., Quidant, R. (2013) Imaging of plasmonic heating in a living organism. ACS Nano. 7: pp. 8666-8672 CrossRef
    15. Wong, F. H., Banks, D. S., Abu-Arish, A., Fradin, C. (2007) A molecular thermometer based on fluorescent protein blinking. J. Am. Chem. Soc. 129: pp. 10302-10303 CrossRef
    16. Leiderman, P., Huppert, D., Agmon, N. (2006) Transition in the temperature-dependence of GFP fluorescence: from proton wires to proton exit. Biophys. J. 90: pp. 1009-1018 CrossRef
    17. Okabe, K., Inada, N., Gota, C., Harada, Y., Funat
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
  • 出版者:The Korean Society for Biotechnology and Bioengineering
  • ISSN:1976-3816
文摘
Genetically encoded fluorescent proteins are extensively utilized for labeling and imaging proteins, organelles, cell tissues, and whole organisms. In this study, we explored the feasibility of mRFP1 and its variants for measuring intracellular temperature. A linear relationship was observed between the temperature and fluorescence intensity of mRFP1 and its variants. Temperature sensitivities of E. coli expressing mRFP1, mRFP-P63A and mRFP-P63A[(4R)-FP] were ?.27%, ?.26% and ?.77%/°C, respectively. Finally, we demonstrated the potentiality of mRFP1 and its variants as an in vivo temperature sensor.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700