Targeted Expression in Zebrafish Primordial Germ Cells by Cre/loxP and Gal4/UAS Systems
详细信息    查看全文
  • 作者:Feng Xiong (1) (2)
    Zhi-Qiang Wei (1) (2)
    Zuo-Yan Zhu (1)
    Yong-Hua Sun (1)
  • 关键词:Gal4/UAS ; Cre/loxP ; Primordial germ cells ; Zebrafish
  • 刊名:Marine Biotechnology
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:15
  • 期:5
  • 页码:526-539
  • 全文大小:853KB
  • 参考文献:1. Abremski K, Hoess R, Sternberg N (1983) Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32(4):1301-311 CrossRef
    2. Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, Kishimoto Y, Hibi M, Kawakami K (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci U S A 105(4):1255-260. doi:10.1073/pnas.0704963105 CrossRef
    3. Blaser H, Eisenbeiss S, Neumann M, Reichman-Fried M, Thisse B, Thisse C, Raz E (2005) Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. J Cell Sci 118(Pt 17):4027-038. doi:10.1242/jcs.02522 CrossRef
    4. Braat AK, van de Water S, Goos H, Bogerd J, Zivkovic D (2000) Vasa protein expression and localization in the zebrafish. Mech Dev 95(1-2):271-74 CrossRef
    5. Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6(1):7-8 CrossRef
    6. Carey M, Kakidani H, Leatherwood J, Mostashari F, Ptashne M (1989) An amino-terminal fragment of GAL4 binds DNA as a dimer. J Mol Biol 209(3):423-32 CrossRef
    7. Ciruna B, Weidinger G, Knaut H, Thisse B, Thisse C, Raz E, Schier AF (2002) Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proc Natl Acad Sci U S A 99(23):14919-4924. doi:10.1073/pnas.222459999 CrossRef
    8. Davison JM, Akitake CM, Goll MG, Rhee JM, Gosse N, Baier H, Halpern ME, Leach SD, Parsons MJ (2007) Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol 304(2):811-24. doi:10.1016/j.ydbio.2007.01.033 CrossRef
    9. Distel M, Wullimann MF, Koster RW (2009) Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proc Natl Acad Sci U S A 106(32):13365-3370. doi:10.1073/pnas.0903060106 CrossRef
    10. Fan L, Moon J, Wong TT, Crodian J, Collodi P (2008) Zebrafish primordial germ cell cultures derived from vasa::RFP transgenic embryos. Stem Cells Dev 17(3):585-97. doi:10.1089/scd.2007.0178 CrossRef
    11. Gallardo T, Shirley L, John GB, Castrillon DH (2007) Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre. Genesis 45(6):413-17. doi:10.1002/dvg.20310 CrossRef
    12. Giniger E, Varnum SM, Ptashne M (1985) Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40(4):767-74 CrossRef
    13. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265(5168):103-06 CrossRef
    14. Guarente L, Yocum RR, Gifford P (1982) A GAL10-CYC1 hybrid yeast promoter identifies the GAL4 regulatory region as an upstream site. Proc Natl Acad Sci U S A 79(23):7410-414 CrossRef
    15. Hammond SS, Matin A (2009) Tools for the genetic analysis of germ cells. Genesis 47(9):617-27. doi:10.1002/dvg.20539 CrossRef
    16. Hoess RH, Abremski K (1985) Mechanism of strand cleavage and exchange in the Cre-lox site-specific recombination system. J Mol Biol 181(3):351-62 CrossRef
    17. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77(1):61-8 CrossRef
    18. John GB, Gallardo TD, Shirley LJ, Castrillon DH (2008) Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol 321(1):197-04. doi:10.1016/j.ydbio.2008.06.017 CrossRef
    19. Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JA, Slanchev K, le Sage C, Nagel R, Voorhoeve PM, van Duijse J, Orom UA, Lund AH, Perrakis A, Raz E, Agami R (2007) RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131(7):1273-286. doi:10.1016/j.cell.2007.11.034 CrossRef
    20. Ketting RF (2007) A dead end for microRNAs. Cell 131(7):1226-227. doi:10.1016/j.cell.2007.12.004 CrossRef
    21. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253-10. doi:10.1002/aja.1002030302 CrossRef
    22. Knaut H, Steinbeisser H, Schwarz H, Nusslein-Volhard C (2002) An evolutionary conserved region in the vasa 3'UTR targets RNA translation to the germ cells in the zebrafish. Curr Biol 12(6):454-66 CrossRef
    23. Koprunner M, Thisse C, Thisse B, Raz E (2001) A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev 15(21):2877-885. doi:10.1101/gad.212401
    24. Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M (2011) Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138(22):4831-841. doi:10.1242/dev.072587dev.072587 CrossRef
    25. Krovel AV, Olsen LC (2002) Expression of a vas::EGFP transgene in primordial germ cells of the zebrafish. Mech Dev 116(1-):141-50 CrossRef
    26. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, Parant JM, Yost HJ, Kanki JP, Chien CB (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236(11):3088-099 CrossRef
    27. Lakso M, Sauer B, Mosinger B Jr, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci U S A 89(14):6232-236 CrossRef
    28. Langenau DM, Feng H, Berghmans S, Kanki JP, Kutok JL, Look AT (2005) Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 102(17):6068-073. doi:10.1073/pnas.0408708102 CrossRef
    29. Le X, Langenau DM, Keefe MD, Kutok JL, Neuberg DS, Zon LI (2007) Heat shock-inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish. Proc Natl Acad Sci U S A 104(22):9410-415. doi:10.1073/pnas.0611302104 CrossRef
    30. Liu W, Collodi P (2010) Zebrafish dead end possesses ATPase activity that is required for primordial germ cell development. FASEB J 24(8):2641-650. doi:10.1096/fj.09-148403 CrossRef
    31. Liu WY, Wang Y, Sun YH, Wang YP, Chen SP, Zhu ZY (2005) Efficient RNA interference in zebrafish embryos using siRNA synthesized with SP6 RNA polymerase. Dev Growth Differ 47(5):323-31. doi:10.1111/j.1440-169X.2005.00807.x CrossRef
    32. Liu WY, Wang Y, Qin Y, Wang YP, Zhu ZY (2007) Site-directed gene integration in transgenic zebrafish mediated by cre recombinase using a combination of mutant lox sites. Mar Biotechnol (NY) 9(4):420-28. doi:10.1007/s10126-007-9000-x CrossRef
    33. Liu X, Li Z, Emelyanov A, Parinov S, Gong Z (2008) Generation of oocyte-specifically expressed cre transgenic zebrafish for female germline excision of loxP-flanked transgene. Dev Dyn 237(10):2955-962. doi:10.1002/dvdy.21701 CrossRef
    34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402-08. doi:10.1006/meth.2001.1262S1046-2023(01)91262-9 CrossRef
    35. Lomeli H, Ramos-Mejia V, Gertsenstein M, Lobe CG, Nagy A (2000) Targeted insertion of Cre recombinase into the TNAP gene: excision in primordial germ cells. Genesis 26(2):116-17 CrossRef
    36. Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN Jr, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) 'GM-gene-deletor': fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5(2):263-74. doi:10.1111/j.1467-7652.2006.00237.x CrossRef
    37. Ohinata Y, Payer B, O'Carroll D, Ancelin K, Ono Y, Sano M, Barton SC, Obukhanych T, Nussenzweig M, Tarakhovsky A, Saitou M, Surani MA (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436(7048):207-13. doi:10.1038/nature03813 CrossRef
    38. Pan X, Wan H, Chia W, Tong Y, Gong Z (2005) Demonstration of site-directed recombination in transgenic zebrafish using the Cre/loxP system. Transgenic Res 14(2):217-23 CrossRef
    39. Phelps CB, Brand AH (1998) Ectopic gene expression in Drosophila using GAL4 system. Methods 14(4):367-79. doi:10.1006/meth.1998.0592 CrossRef
    40. Saito T, Goto-Kazeto R, Arai K, Yamaha E (2008) Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod 78(1):159-66. doi:10.1095/biolreprod.107.060038 CrossRef
    41. Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, Xiao T, Chi NC, Asakawa K, Kawakami K, Baier H (2007) Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods 4(4):323-26. doi:10.1038/nmeth1033
    42. Seok SH, Na YR, Han JH, Kim TH, Jung H, Lee BH, Emelyanov A, Parinov S, Park JH (2010) Cre/loxP-regulated transgenic zebrafish model for neural progenitor-specific oncogenic Kras expression. Cancer Sci 101(1):149-54. doi:10.1111/j.1349-7006.2009.01393.x CrossRef
    43. Shaikh AC, Sadowski PD (1997) The Cre recombinase cleaves the lox site in trans. J Biol Chem 272(9):5695-702 CrossRef
    44. Siegal ML, Hartl DL (1996) Transgene coplacement and high efficiency site-specific recombination with the Cre/loxP system in / Drosophila. Genetics 144(2):715-26
    45. Slanchev K, Stebler J, de la Cueva-Mendez G, Raz E (2005) Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci U S A 102(11):4074-079. doi:10.1073/pnas.0407475102 CrossRef
    46. Suzuki H, Tsuda M, Kiso M, Saga Y (2008) Nanos3 maintains the germ cell lineage in the mouse by suppressing both Bax-dependent and -independent apoptotic pathways. Dev Biol 318(1):133-42. doi:10.1016/j.ydbio.2008.03.020 CrossRef
    47. Thisse B, Heyer V, Lux A, Alunni V, Degrave A, Seiliez I, Kirchner J, Parkhill JP, Thisse C (2004) Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol 77:505-19 CrossRef
    48. Thummel R, Burket CT, Brewer JL, Sarras MP Jr, Li L, Perry M, McDermott JP, Sauer B, Hyde DR, Godwin AR (2005) Cre-mediated site-specific recombination in zebrafish embryos. Dev Dyn 233(4):1366-377. doi:10.1002/dvdy.20475 CrossRef
    49. Traven A, Jelicic B, Sopta M (2006) Yeast Gal4: a transcriptional paradigm revisited. EMBO Rep 7(5):496-99. doi:10.1038/sj.embor.7400679 CrossRef
    50. Urasaki A, Morvan G, Kawakami K (2006) Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174(2):639-49. doi:10.1534/genetics.106.060244 CrossRef
    51. Van Doren M, Williamson AL, Lehmann R (1998) Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr Biol 8(4):243-46 CrossRef
    52. Vergunst AC, Jansen LE, Hooykaas PJ (1998) Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Res 26(11):2729-734 CrossRef
    53. Wang L, Zhang Y, Zhou T, Fu YF, Du TT, Jin Y, Chen Y, Ren CG, Peng XL, Deng M, Liu TX (2008) Functional characterization of Lmo2-Cre transgenic zebrafish. Dev Dyn 237(8):2139-146. doi:10.1002/dvdy.21630 CrossRef
    54. Weidinger G, Stebler J, Slanchev K, Dumstrei K, Wise C, Lovell-Badge R, Thisse C, Thisse B, Raz E (2003) dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol 13(16):1429-434 CrossRef
    55. Westerfield M (1995) The zebrafish book: a guide for the laboratory use of zebrafish ( / Danio rerio). University of Oregon, Eugene
    56. Yoon C, Kawakami K, Hopkins N (1997) Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124(16):3157-165
    57. Yoshikawa S, Kawakami K, Zhao XC (2008) G2R Cre reporter transgenic zebrafish. Dev Dyn 237(9):2460-465. doi:10.1002/dvdy.21673 CrossRef
    58. Youngren KK, Coveney D, Peng X, Bhattacharya C, Schmidt LS, Nickerson ML, Lamb BT, Deng JM, Behringer RR, Capel B, Rubin EM, Nadeau JH, Matin A (2005) The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435(7040):360-64. doi:10.1038/nature03595 CrossRef
    59. Zhan H, Gong Z (2010) Delayed and restricted expression of UAS-regulated GFP gene in early transgenic zebrafish embryos by using the GAL4/UAS system. Mar Biotechnol (NY) 12(1):1-. doi:10.1007/s10126-009-9217-y CrossRef
  • 作者单位:Feng Xiong (1) (2)
    Zhi-Qiang Wei (1) (2)
    Zuo-Yan Zhu (1)
    Yong-Hua Sun (1)

    1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
    2. University of Chinese Academy of Sciences, Beijing, 100049, China
文摘
In zebrafish and other vertebrates, primordial germ cells (PGCs) are a population of embryonic cells that give rise to sperm and eggs in adults. Any type of genetically manipulated lines have to be originated from the germ cells of the manipulated founders, thus it is of great importance to establish an effective technology for highly specific PGC-targeted gene manipulation in vertebrates. In the present study, we used the Cre/loxP recombinase system and Gal4/UAS transcription system for induction and regulation of mRFP (monomer red fluorescent protein) gene expression to achieve highly efficient PGC-targeted gene expression in zebrafish. First, we established two transgenic activator lines, Tg(kop:cre) and Tg(kop:KalTA4), to express the Cre recombinases and the Gal4 activator proteins in PGCs. Second, we generated two transgenic effector lines, Tg(kop:loxP-SV40-loxP-mRFP) and Tg(UAS:mRFP), which intrinsically showed transcriptional silence of mRFP. When Tg(kop:cre) females were crossed with Tg(kop:loxP-SV40-loxP-mRFP) males, the loxP flanked SV40 transcriptional stop sequence was 100?% removed from the germ cells of the transgenic hybrids. This led to massive production of PGC-specific mRFP transgenic line, Tg(kop:loxP-mRFP), from an mRFP silent transgenic line, Tg(kop:loxP-SV40-loxP-mRFP). When Tg(kop:KalTA4) females were crossed with Tg(UAS:mRFP) males, the hybrid embryos showed PGC specifically expressed mRFP from shield stage till 25?days post-fertilization (pf), indicating the high sensitivity, high efficiency, and long-lasting effect of the Gal4/UAS system. Real-time PCR analysis showed that the transcriptional amplification efficiency of the Gal4/UAS system in PGCs can be about 300 times higher than in 1-day-pf embryos. More importantly, when the UAS:mRFP-nos1 construct was directly injected into the Tg(kop:KalTA4) embryos, it was possible to specifically label the PGCs with high sensitivity, efficiency, and persistence. Therefore, we have established two targeted gene expression platforms in zebrafish PGCs, which allows us to further manipulate the PGCs of zebrafish at different levels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700