Moving across scales: a quantitative assessment of X-ray CT to measure the porosity of rocks
详细信息    查看全文
  • 作者:Ronny Pini ; Claudio Madonna
  • 关键词:X ; ray CT ; Image segmentation ; Porosity heterogeneity ; Reservoir rocks
  • 刊名:Journal of Porous Materials
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:23
  • 期:2
  • 页码:325-338
  • 全文大小:3,618 KB
  • 参考文献:1.D. Wildenschild, A.P. Sheppard, Adv. Water Res. 51, 217 (2013)CrossRef
    2.F. Fusseis, X. Xiao, C. Schrank, F. De Carlo, J. Struct. Geol. 65, 1 (2014)CrossRef
    3.S. Wellington, H. Vinegar, J. Pet. Technol. 39, 885 (1987)CrossRef
    4.E.M. Withjack, SPE Form. Eval. 3, 696 (1988)CrossRef
    5.V. Cnudde, M. Boone, Earth Sci. Rev. 123, 1 (2013)CrossRef
    6.D. Silin, L. Tomutsa, S. Benson, T. Patzek, Transport Porous Media 86(2), 495 (2011)CrossRef
    7.M. Andrew, B. Bijeljic, M.J. Blunt, Geophys. Res. Lett. 40(15), 3915 (2013)CrossRef
    8.A.L. Herring, L. Andersson, D. Newell, J. Carey, D. Wildenschild, Int. J. Greenh. Gas Control 25, 93 (2014)CrossRef
    9.S.C.M. Krevor, R. Pini, L. Zuo, S.M. Benson, Water Resour. Res. 48(2), W02532 (2012)CrossRef
    10.S. Berg, S. Oedai, H. Ott, Int. J. Greenh. Gas Control 12, 478 (2013)CrossRef
    11.R. Pini, S.M. Benson, Water Resour. Res. 49(6), 3516 (2013)CrossRef
    12.M. Akbarabadi, M. Piri, Adv. Water Res. 52, 190 (2013)CrossRef
    13.R. Pini, S.C.M. Krevor, S.M. Benson, Adv. Water Res. 38, 48 (2012)CrossRef
    14.R.H. Brooks, A.T. Corey, Hydrol. Pap. 3, 1 (1964)
    15.W. Murphy, J. Roberts, D. Yale, K. Winkler, Geophys. Res. Lett. 11(8), 697 (1984)CrossRef
    16.K.A. Klise, V.C. Tidwell, S.A. McKenna, Adv. Water Res. 31(12), 1731 (2008)CrossRef
    17.J.C. Perrin, S. Benson, Transport Porous Media 82(1), 93 (2010)CrossRef
    18.J.Q. Shi, Z. Xue, S. Durucan, Int. J. Greenh. Gas Control 5(1), 75 (2011)CrossRef
    19.B.L. Alemu, E. Aker, M. Soldal, Ø. Johnsen, P. Aagaard, Geophys. Prospect. 61(1), 235 (2013)CrossRef
    20.S. Krevor, R. Pini, B. Li, S. Benson, Geophys. Res. Lett. 38, L15401 (2011)CrossRef
    21.R. Pini, S.M. Benson, Geophys. Res. Lett. 40(15), 3903 (2013)CrossRef
    22.T. Tran, J. Hydrol. 183(1), 37 (1996)CrossRef
    23.A.D. Grader, A.B. Clark, T. Al-Dayyani, A. Nur, in Proceedings of the International Symposium of the Society of Core Analysts, Noordwijk aan Zee, The Netherlands, 27–30 September 2009
    24.R.M. Sok, T. Varslot, A. Ghous, S. Latham, A.P. Sheppard, M.A. Knackstedt, Petrophysics 51(6), 379 (2010)
    25.P. Lai, K. Moulton, S. Krevor, Chem. Geol. 411, 260 (2015)CrossRef
    26.R. Pini, Langmuir 30(37), 10984 (2014)CrossRef
    27.S. Akin, A.R. Kovscek, in Applications of X-ray Computed Tomography in the Geosciences, ed. by F. Mees, R.Swennen, M. Van Geet, P. Jacobs, vol 215 (Geological Society, London, 2003), pp. 23–38
    28.H. Ott, K. de Kloe, M. van Bakel, F. Vos, A. van Pelt, P. Legerstee, A. Bauer, K. Eide, A. van der Linden, S. Berg, Rev. Sci. Instrum. 83(8), 084501 (2012)CrossRef
    29.Y. Zhang, O. Nishizawa, T. Kiyama, S. Chiyonobu, Z. Xue, Geophys. J. Int. 197(3), 1789 (2014)CrossRef
    30.B. Vega, A. Dutta, A.R. Kovscek, Transport Porous Media 101(1), 81 (2014)CrossRef
    31.E.J. Peters, W.D. Hardham, J. Pet. Sci. Eng. 4(2), 155 (1990)CrossRef
    32.S. Ganapathy, D.G. Wreath, M.T. Lim, B.A. Rouse, G.A. Pope, K. Sepehrnoori, SPE Form. Eval. 8(4), 273 (1993)CrossRef
    33.M. Honarpour, A. Cullick, N. Saad, N. Humphreys, J. Pet. Technol. 47, 980 (1995)CrossRef
    34.P. Iassonov, T. Gebrenegus, M. Tuller, Water Resour. Res. 45(9), 1 (2009)CrossRef
    35.H. Andrä, N. Combaret, J. Dvorkin, E. Glatt, J. Han, M. Kabel, Y. Keehm, F. Krzikalla, M. Lee, C. Madonna, Comput. Geosci. 50, 25 (2013)CrossRef
    36.P.C. Baveye, M. Laba, W. Otten, L. Bouckaert, P. Dello Sterpaio, R.R. Goswami, D. Grinev, A. Houston, Y. Hu, J. Liu, Geoderma 157(1), 51 (2010)CrossRef
    37.L. Leu, S. Berg, F. Enzmann, R. Armstrong, M. Kersten, Transport Porous Media 105(2), 451 (2014)CrossRef
    38.M.L. Porter, D. Wildenschild, Comput. Geosci. 14(1), 15 (2010)CrossRef
    39.C.E. Shannon, Proc. IRE 37(1), 10 (1949)CrossRef
    40.A. Buades, B. Coll, J.M. Morel, IPOL J. doi:10.​5201/​ipol.​2011.​bcm_​nlm (2011)
    41.H. Vogel, A. Kretzschmar, Geoderma 73(1), 23 (1996)CrossRef
    42.L. Vincent, P. Soille, I.E.E.E. Trans, Pattern Anal. Mach. Intell. 6, 583 (1991)CrossRef
    43.S. Schlüter, A. Sheppard, K. Brown, D. Wildenschild, Water Resour. Res. 50(4), 3615 (2014)CrossRef
    44.G. Kerckhofs, J. Schrooten, T. Van Cleynenbreugel, S.V. Lomov, M. Wevers, Rev. Sci. Instrum. 79(1), 013711 (2008)CrossRef
    45.N.J. Cox, Geomorphology 76(3), 332 (2006)CrossRef
    46.J.R. Taylor, An Introduction to Error Analysis, 2nd edn. (University Science Books, Mill Valley, 1997)
    47.M. Chaouche, N. Rakotomalala, D. Salin, B. Xu, Y. Yortsos, Chem. Eng. Sci. 49(15), 2447 (1994)CrossRef
    48.J. Bear, Dynamics of Fluids in Porous Media (Dover, New York, 1988)
  • 作者单位:Ronny Pini (1)
    Claudio Madonna (2)

    1. Department of Chemical Engineering, Imperial College London, London, UK
    2. Swiss Competence Center for Energy Research (SCCER-SoE), ETH Zurich, Zurich, Switzerland
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Characterization and Evaluation Materials
    Physical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-4854
文摘
We apply multidimensional X-ray CT to quantify the porosity of Berea Sandstone by using both medical- and synchrotron-based X-ray radiation, so as to produce images of the same sample with mm- and micron-resolution, respectively. Three different samples are used and the obtained tomograms are compared by considering the spatial distribution of porosity values for the range of voxel sizes 0.25–16 mm3. The agreement between the two independent techniques is assessed by means of the concordance correlation coefficient. Statistically significant correlations are found for each sample up to the maximum resolution of the medical CT scanner, i.e. for images with a voxel size of \((0.5 \times 0.5 \times 1\,\hbox {mm})^{3}\). The direct comparison of images obtained by medical- and synchrotron-based X-ray radiation has a dual benefit. First, it objectively informs the segmentation step required for the binarization of the high-resolution synchrotron images that is otherwise prone to operator bias; in this context, the applicability of the proposed workflow is demonstrated with two widely applied locally adaptive thresholding algorithms, namely the hysteresis and the watershed methods. Secondly, once this calibration has occurred, the coupling of the two techniques allows analyzing porosity heterogeneity across a range of length-scales that spans over more than eight orders of magnitude. We anticipate that the ability to perform a true multi-scale experiment may represent the required point of departure for developing up-scaling approaches that capture the inherently complex heterogeneity of rocks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700