Missense-Mutationen in Transkriptionsfaktoren
详细信息    查看全文
  • 作者:Dr. rer. nat. Daniel Murad Ibrahim (1) (2)

    1. Institut f眉r Medizinische Genetik und Humangenetik
    ; Universit盲tsklinikum Charit茅 ; Campus Virchow-Klinikum ; Augustenburger Platz 1 ; 13353 ; Berlin ; Deutschland
    2. Max-Planck Institut f眉r Molekulare Genetik
    ; Ihnestr. 63鈥?3 ; 14195 ; Berlin ; Deutschland
  • 关键词:Transkriptionsfaktor ; Genregulation ; Gain ; of ; Function ; Mutation ; Punktmutation ; Missense ; Mutation ; Transcription factor ; Gene regulation ; Gain ; of ; function mutation ; Point mutation ; Missense mutation
  • 刊名:medizinische genetik
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:27
  • 期:1
  • 页码:1-6
  • 全文大小:752 KB
  • 参考文献:1. Albrecht, AN, Kornak, U, B枚ddrich, A (2004) A molecular pathogenesis for transcription factor associated poly-alanine tract expansions. Hum Mol Genet 13: pp. 2351-2359 CrossRef
    2. Basson, CT, Huang, T, Lin, RC (1999) Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci USA 96: pp. 2919-2924 CrossRef
    3. Brison, N, Debeer, P, Tylzanowski, P (2014) Joining the fingers: a HOXD13 story. Dev Dyn 243: pp. 37-48 CrossRef
    4. Cantor, AB, Iwasaki, H, Arinobu, Y (2008) Antagonism of FOG-1 and GATA factors in fate choice for the mast cell lineage. J Exp Med 205: pp. 611-624 CrossRef
    5. Chlon, TM, Crispino, JD (2012) Combinatorial regulation of tissue specification by GATA and FOG factors. Development 139: pp. 3905-3916 CrossRef
    6. Chlon, TM, Dor茅, LC, Crispino, JD (2012) Cofactor-mediated restriction of GATA-1 chromatin occupancy coordinates lineage-specific gene expression. Mol Cell 47: pp. 608-621 CrossRef
    7. Ciovacco, WA, Raskind, WH, Kacena, MA (2008) Human phenotypes associated with GATA-1 mutations. Gene 427: pp. 1-6 CrossRef
    8. El, GV, Legeai-Mallet, L, Benoist-Lasselin, C (2001) Mutations in the basic domain and the loop鈥揾elix II junction of TWIST abolish DNA binding in Saethre鈥揅hotzen syndrome. FEBS Lett 492: pp. 112-118 CrossRef
    9. Frietze, S, Wang, R, Yao, L (2012) Cell type-specific binding patterns reveal that TCF7L2 can be tethered to the genome by association with GATA3. Genome Biol 13: pp. R52 CrossRef
    10. Fujiwara, Y, Browne, CP, Cunniff, K (1996) Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci 93: pp. 12355-12358 CrossRef
    11. Gerstein, MB, Kundaje, A, Hariharan, M (2012) Architecture of the human regulatory network derived from ENCODE data. Nature 489: pp. 91-100 CrossRef
    12. He, A, Kong, SW, Ma, Q (2011) Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc Natl Acad Sci 108: pp. 5632-5637 CrossRef
    13. Herskowitz, I (1987) Functional inactivation of genes by dominant negative mutations. Nature 329: pp. 219-222 CrossRef
    14. Ibrahim, DM, Hansen, P, Rodelsperger, C (2013) Distinct global shifts in genomic binding profiles of limb malformation-associated HOXD13 mutations. Genome Res 23: pp. 2091-2102 CrossRef
    15. Infante CR, Park S, Mihala A et al (2012) Pitx1 broadly associates with limb enhancers and is enriched on hindlimb cis-regulatory elements. Dev Biol:1鈥?1
    16. Lesluyes, T, Johnson, J, Machanick, P (2014) Differential motif enrichment analysis of paired ChIP-seq experiments. BMC Genomics 15: pp. 752 CrossRef
    17. Li, QY, Newbury-Ecob, RA, Terrett, JA (1997) Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 15: pp. 21-29 CrossRef
    18. Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biomed Sci聽25:99鈥?04
    19. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet聽10:669鈥?80
    20. Robertson, G, Hirst, M, Bainbridge, M (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4: pp. 651-657 CrossRef
    21. Saadi, I, Kuburas, A, Engle, JJ (2003) dominant negative dimerization of a mutant homeodomain protein in Axenfeld-Rieger syndrome. Mol Cell Biol 23: pp. 1968-1982 CrossRef
    22. Saadi, I, Semina, EV, Amendt, BA (2001) Identification of a dominant negative homeodomain mutation in Rieger syndrome. J Biol Chem 276: pp. 23034-23041 CrossRef
    23. Shamseldin, HE, Faden, MA, Alashram, W (2012) Identification of a novel DLX5 mutation in a family with autosomal recessive split hand and foot malformation. J Med Genet 49: pp. 16-20 CrossRef
    24. Spitz, F, Furlong, EEM (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13: pp. 613-626 CrossRef
    25. Stoltenburg, R, Reinemann, C, Strehlitz, B (2007) SELEX鈥攁 (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24: pp. 381-403 CrossRef
    26. Wang, J, Zhuang, J, Iyer, S (2012) Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res 22: pp. 1798-1812 CrossRef
    27. Whitfield, TW, Wang, J, Collins, PJ (2012) Functional analysis of transcription factor binding sites in human promoters. Genome Biol 13: pp. R50 CrossRef
    28. Wilkie, AO, Tang, Z, Elanko, N (2000) Functional haploinsufficiency of the human homeobox gene MSX2 causes defects in skull ossification. Nat Genet 24: pp. 387-390 CrossRef
    29. Zhao, X, Sun, M, Zhao, J (2007) Mutations in HOXD13 underlie syndactyly type V and a novel brachydactyly-syndactyly syndrome. Am J Hum Genet 80: pp. 361-371 CrossRef
  • 刊物主题:Human Genetics; Reproductive Medicine; Pediatrics; Obstetrics/Perinatology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1863-5490
文摘
Transcription factors (TF) are key regulators that control the cell-type-specific gene expression in each individual cell and are crucial for the coordination of embryonic development. Mutations in TFs frequently underlie heritable developmental defects; however, the functional characterization of a variant TF is challenging, since the exact molecular mechanisms by which TFs exert their function are not fully understood. In particular, gain-of-function mutations can lead to novel phenotypes that are difficult to characterize functionally. Recent technological advances, in particular ChIP-seq, have enabled experimental approaches that can distinguish between distinct molecular mechanisms underlying TF-associated diseases. This article reviews the molecular pathomechanisms underlying various TF mutations and proposes approaches to previously unknown TF mutations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700