Cyclic olefin copolymer–silica nanocomposites foams
详细信息    查看全文
  • 作者:Alessandro Pegoretti ; Andrea Dorigato ; Andrea Biani…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:51
  • 期:8
  • 页码:3907-3916
  • 全文大小:1,422 KB
  • 参考文献:1.Cooper AI (2003) Porous materials and supercritical fluids. Adv Mater 15:1049–1059CrossRef
    2.Bhattacharya S, Gupta RK, Jollands M, Bhattacharya SN (2009) Foaming behavior of high-melt strength polypropylene/clay nanocomposites. Polym Eng Sci 49:2070–2084CrossRef
    3. Deng L, Zhang J, Yu W and Zhao Y (2008) Foaming behavior of polystyrene with supercritical carbon dioxide. 11th European Meeting on Supercritical Fluids. Barcelona, Spain
    4.Gendron R, Champagne MF, Tatibouet J, Bureau MN (2009) Foaming cyclo-olefin copolymers with carbon dioxide. Cell Polym 28:1–23
    5.Han X, Koelling KW, Tomasko DL, Lee LJ (2002) Continuous microcellular polystyrene foam extrusion with supercritical CO2. Polym Eng Sci 42:2094–2106CrossRef
    6.Han X, Zeng C, Lee LJ, Koelling KW, Tomasko DL (2003) Extrusion of polystyrene nanocomposite foams with supercritical CO2. Polym Eng Sci 43:1261–1275CrossRef
    7.Jiang X-L, Bao J-B, Liu T, Zhao L, Xu Z-M and Yuan W-K (2009) Microcellular foaming of polypropylene/clay nanocomposites with supercritical carbon dioxide. J Cell Plast 45(6):515–538
    8.Nam PH, Maiti P, Okamoto M et al (2002) Foam processing and cellular structure of polypropylene/clay nanocomposites. Polym Eng Sci 42:1907–1918CrossRef
    9.Otsuka T, Taki K, Ohshima M (2008) Nanocellular foams of PS/PMMA polymer blends. Macromol Mater Eng 293:78–82CrossRef
    10.Strauss W, D’Souza NA (2004) Supercritical CO2 processed polystyrene nanocomposite foams. J Cell Plast 40:229–241CrossRef
    11.Xu Z-M, Jiang X-L, Liu T et al (2007) Foaming of polypropylene with supercritical carbon dioxide. J Supercrit Fluids 41:299–310CrossRef
    12.Zosel K (1978) Praktische Anwendungen der Stofftrennung mit überkritischen Gasen. Angew Chem 90:748–755CrossRef
    13.Nalawade SP, Picchioni F, Janssen L (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31:19–43CrossRef
    14.Yeo S-D, Kiran E (2005) Formation of polymer particles with supercritical fluids: a review. J Supercrit Fluids 34:287–308CrossRef
    15.Arndt M, Beulich I (1998) C1-symmetric metallocenes for olefin polymerisation, 1. Catalytic performance of [Me2C (3-tertBuCp)(Flu)] ZrCl2 in ethene/norbornene copolymerisation. Macromol Chem Phys 199:1221–1232CrossRef
    16.Ou C-F, Hsu M-C (2007) Preparation and characterization of cyclo olefin copolymer (COC)/silica nanoparticle composites by solution blending. J Polym Res 14:373–378CrossRef
    17.Ou CF, Hsu MC (2007) Preparation and properties of cycloolefin copolymer/silica hybrids. J Appl Polym Sci 104:2542–2548CrossRef
    18.Forsyth JF, Scrivani T, Benavente R, Marestin C, Perena JM (2001) Thermal and dynamic mechanical behavior of ethylene/norbornene copolymers with medium norbornene contents. J Appl Polym Sci 82:2159–2165CrossRef
    19.Kolařík J, Pegoretti A, Fambri L, Penati A (2006) High-density polyethylene/cycloolefin copolymer blends, part 2: nonlinear tensile creep. Polym Eng Sci 46:1363–1373CrossRef
    20.Mandalia T, Bergaya F (2006) Organo clay mineral–melted polyolefin nanocomposites effect of surfactant/CEC ratio. J Phys Chem Solids 67:836–845CrossRef
    21.Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. Wiley, Hoboken
    22.Bondioli F, Dorigato A, Fabbri P, Messori M, Pegoretti A (2008) High-density polyethylene reinforced with submicron titania particles. Polym Eng Sci 48:448–457CrossRef
    23.Dorigato A, Pegoretti A (2012) Fracture behaviour of linear low density polyethylene–fumed silica nanocomposites. Eng Fract Mech 79:213–224CrossRef
    24.Dorigato A, Pegoretti A, Fambri L, Slouf M, Kolarik J (2011) Cycloolefin copolymer/fumed silica nanocomposites. J Appl Polym Sci 119:3393–3402CrossRef
    25.Jana SC, Jain S (2001) Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids. Polymer 42:6897–6905CrossRef
    26.Dorigato A, Pegoretti A, Frache A (2012) Thermal stability of high density polyethylene–fumed silica nanocomposites. J Therm Anal Calorim 109:863–873CrossRef
    27.Chen L, Schadler LS, Ozisik R (2011) An experimental and theoretical investigation of the compressive properties of multi-walled carbon nanotube/poly (methyl methacrylate) nanocomposite foams. Polymer 52:2899–2909CrossRef
    28.Huang H-X, Wang J-K, Sun X-H (2008) Improving of cell structure of microcellular foams based on polypropylene/high-density polyethylene blends. J Cell Plast 44:69–85CrossRef
    29.Kozlowski M (2012) Lightweight plastic materials. INTECH Open Access Publisher, RijekaCrossRef
    30.Li G, Wang J, Park C, Simha R (2007) Measurement of gas solubility in linear/branched PP melts. J Polym Sci Part B 45:2497–2508CrossRef
    31.Rachtanapun P, Selke S, Matuana L (2004) Effect of the high-density polyethylene melt index on the microcellular foaming of high-density polyethylene/polypropylene blends. J Appl Polym Sci 93:364–371CrossRef
    32.Su FH, Huang HX (2010) Rheology and melt strength of long chain branching polypropylene prepared by reactive extrusion with various peroxides. Polym Eng Sci 50:342–351CrossRef
    33.Tsivintzelis I, Angelopoulou AG, Panayiotou C (2007) Foaming of polymers with supercritical CO2: an experimental and theoretical study. Polymer 48:5928–5939CrossRef
    34.Corre Y-M, Maazouz A, Duchet J, Reignier J (2011) Batch foaming of chain extended PLA with supercritical CO2: influence of the rheological properties and the process parameters on the cellular structure. J Supercrit Fluids 58:177–188CrossRef
    35.Sun Y, Matsumoto M, Kitashima K, Haruki M, S-i Kihara, Takishima S (2014) Solubility and diffusion coefficient of supercritical-CO2 in polycarbonate and CO2 induced crystallization of polycarbonate. J Supercrit Fluids 95:35–43CrossRef
    36.D’Amato M, Dorigato A, Fambri L, Pegoretti A (2012) High performance polyethylene nanocomposite fibers. Express Polym Lett 6:954–964CrossRef
    37.S-s Hwang, Hsu PP (2013) Effects of silica particle size on the structure and properties of polypropylene/silica composites foams. J Ind Eng Chem 19:1377–1383CrossRef
    38.Pegoretti A, Dorigato A, Penati A (2007) Tensile mechanical response of polyethylene–clay nanocomposites. Express Polym Lett 1:123–131CrossRef
    39.Starkova O, Yang J, Zhang Z (2007) Application of time–stress superposition to nonlinear creep of polyamide 66 filled with nanoparticles of various sizes. Compos Sci Technol 67:2691–2698CrossRef
    40.Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeCrossRef
    41.Alvarez P, Mendizabal A, Petite M, Rodríguez-Pérez M, Echeverria A (2009) Finite element modelling of compressive mechanical behaviour of high and low density polymeric foams. Materialwiss Werkstofftech 40:126–132CrossRef
    42.De Vries D (2009) Characterization of polymeric foams. Eindhoven University of Technology, Eindhoven
  • 作者单位:Alessandro Pegoretti (1)
    Andrea Dorigato (1)
    Andrea Biani (1)
    Miroslav Slouf (2)

    1. Department of Industrial Engineering and INSTM Research Unit, University of Trento, via Sommarive 9, 38123, Trento, Italy
    2. Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06, Prague 6, Czech Republic
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
A cyclic olefin copolymer (COC) matrix was melt compounded with various amounts of fumed silica nanoparticles (1, 3 and 5 vol%) and the resulting materials were foamed through supercritical carbon dioxide. Foams were produced at four different foaming pressures (90, 110, 130, and 150 bar), keeping all other processing parameters constant. The main physical properties of both bulk and foamed samples were investigated in order to assess the role of both nanofiller content and foaming pressure. It was observed that the density values of the foamed materials decreased as the foaming pressure increased and that the presence of nanofillers leads to slightly denser materials. Both scanning and transmission electron microscopy evidenced the presence of filler aggregates on the bulk composites. These aggregates resulted to be elongated along the cell wall direction upon foaming. Dynamic mechanical thermal analysis, quasi-static tensile tests, and creep tests evidenced a positive effect played by nanosilica in improving the stiffness, the strength, and the creep stability of the polymer matrix for all foaming pressures. The application of a theoretical model for closed-cell foams highlighted how the stiffening effect provided by the nanosilica networking is mostly effective at elevated filler amounts and reduced foaming pressure values.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700