Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment
详细信息    查看全文
  • 作者:Houssine Sehaqui (1)
    Uxua Perez de Larraya (2)
    Peng Liu (4)
    Numa Pfenninger (3)
    Aji P. Mathew (4)
    Tanja Zimmermann (1)
    Philippe Tingaut (1)
  • 关键词:Cellulose ; Chitin ; Biobased nanofibers ; Heavy metal ions removal ; Purification technology
  • 刊名:Cellulose
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:21
  • 期:4
  • 页码:2831-2844
  • 全文大小:1,215 KB
  • 参考文献:1. Alasheh S, Duvnjak Z (1995) Adsorption of copper and chromium by / Aspergillus carbonarius. Biotechnol Progr 11(6):638-42. doi:10.1021/Bp00036a006 CrossRef
    2. Aydin H, Buluta Y, Yerlikaya C (2008) Removal of copper(II) from aqueous solution by adsorption onto low-cost adsorbents. J Environ Manag 87(1):37-5. doi:10.1016/j.jenvman.2007.01.005 CrossRef
    3. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97(1-):219-43. doi:10.1016/S0304-3894(02)00263-7 CrossRef
    4. Bassi R, Prasher SO, Simpson BK (2000) Removal of selected metal ions from aqueous solutions using chitosan flakes. Sep Sci Technol 35(4):547-60. doi:10.1081/Ss-100100175 CrossRef
    5. Celis R, Hermosin MC, Cornejo J (2000) Heavy metal adsorption by functionalized clays. Environ Sci Technol 34(21):4593-599. doi:10.1021/Es000013c CrossRef
    6. Chu KH (2002) Removal of copper from aqueous solution by chitosan in prawn shell: adsorption equilibrium and kinetics. J Hazard Mater 90(1):77-5. doi:10.1016/S0304-3894(01)00332-6 CrossRef
    7. Fan YM, Saito T, Isogai A (2009) TEMPO-mediated oxidation of beta-chitin to prepare individual nanofibrils. Carbohydr Polym 77(4):832-38. doi:10.1016/j.carbpol.2009.03.008 CrossRef
    8. Fukuzumi H, Fujisawa S, Saito T, Isogai A (2013) Selective permeation of hydrogen gas using cellulose nanofibril film. Biomacromolecules 14(5):1705-709. doi:10.1021/Bm400377e CrossRef
    9. Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45(20):9101-108. doi:10.1021/es202223p CrossRef
    10. Gundogan R, Acemioglu B, Alma MH (2004) Copper(II) adsorption from aqueous solution by herbaceous peat. J Colloid Interface Sci 269(2):303-09. doi:10.1016/S0021-9797(03)00762-8 CrossRef
    11. Gurgel LVA, Junior OK, Gil RPDF, Gil LF (2008) Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresour Technol 99(8):3077-083. doi:10.1016/j.biortech.2007.05.072 CrossRef
    12. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479-500. doi:10.1021/Cr900339w CrossRef
    13. Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579-585. doi:10.1021/bm800038n CrossRef
    14. Hokkanen S, Repo E, Sillanp?? M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40-7. doi:10.1016/j.cej.2013.02.054 CrossRef
    15. Huang C, Liou MR, Liu CB (1994) Experimental evaluation of pelletized chitosan and alginate for removal of trace heavy metals from polluted waters. Hazard Ind Wastes 26:275-84
    16. Huang LY, Ou ZY, Boving TB, Tyson J, Xing BS (2009) Sorption of copper by chemically modified aspen wood fibers. Chemosphere 76(8):1056-061. doi:10.1016/j.chemosphere.2009.04.030 CrossRef
    17. Isobe N, Chen X, Kim U-J, Kimura S, Wada M, Saito T, Isogai A (2013) TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent. J Hazard Mater 260:195-01. doi:10.1016/j.jhazmat.2013.05.024 CrossRef
    18. Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40. doi:10.1016/j.indcrop.2012.03.018
    19. Karnitz O, Gurgel LVA, de Melo JCP, Botaro VR, Melo TMS, Gil RPDF, Gil LF (2007) Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour Technol 98(6):1291-297. doi:10.1016/j.biortech.2006.05.013 CrossRef
    20. Katz S, Beatson RP, Scallan AM (1984) The determination of strong and weak acidic groups in sulphite pulps. Svensk Papperstidn 87:48-3
    21. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Edit 50(24):5438-466. doi:10.1002/anie.201001273 CrossRef
    22. Lee YC, Chang SP (2011) The biosorption of heavy metals from aqueous solution by / Spirogyra and / Cladophora filamentous macroalgae. Bioresour Technol 102(9):5297-304. doi:10.1016/j.biortech.2010.12.103 CrossRef
    23. Lee ST, Mi FL, Shen YJ, Shyu SS (2001) Equilibrium and kinetic studies of copper(II) ion uptake by chitosan-tripolyphosphate chelating resin. Polymer 42(5):1879-892. doi:10.1016/S0032-3861(00)00402-X CrossRef
    24. Liu P, Sehaqui H, Tingaut P, Wichser A, Oksman K, Mathew A (2013) Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 1-3. doi:10.1007/s10570-013-0139-5
    25. Lothenbach B, Furrer G, Schulin R (1997) Immobilization of heavy metals by polynuclear aluminium and montmorillonite compounds. Environ Sci Technol 31(5):1452-462. doi:10.1021/Es960697h CrossRef
    26. Ma HY, Burger C, Hsiao BS, Chu B (2012a) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromolecules 13(1):180-86. doi:10.1021/Bm201421g CrossRef
    27. Ma HY, Hsiao BS, Chu B (2012b) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in water. Acs Macro Lett 1(1):213-16. doi:10.1021/Mz200047q CrossRef
    28. Macfarlane AL, Kadla JF, Kerekes RJ (2012) High performance air filters produced from freeze-dried fibrillated wood pulp: fiber network compression due to the freezing process. Ind Eng Chem Res 51(32):10702-0711. doi:10.1021/Ie301340q CrossRef
    29. Matheickal JT, Yu QM (1999) Biosorption of lead(II) and copper(II) from aqueous solutions by pre-treated biomass of Australian marine algae. Bioresour Technol 69(3):223-29. doi:10.1016/S0960-8524(98)00196-5 CrossRef
    30. Nelson M, O’Connor R (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325-341 CrossRef
    31. Ngah WSW, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol 99(10):3935-948. doi:10.1016/j.biortech.2007.06.011 CrossRef
    32. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99(15):6709-724. doi:10.1016/j.biortech.2008.01.036 CrossRef
    33. Ozer A, Ozer D, Ozer A (2004) The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): determination of the equilibrium and thermodynamic parameters. Process Biochem 39(12):2183-191. doi:10.1016/j.procbio.2003.11.008 CrossRef
    34. Pavasant P, Apiratikul R, Sungkhum V, Suthiparinyanont P, Wattanachira S, Marhaba TF (2006) Biosorption of CU2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga / Caulerpa lentillifera. Bioresour Technol 97(18):2321-329. doi:10.1016/j.biortech.2005.10.032 CrossRef
    35. Perez DD, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4(5):1417-425. doi:10.1021/bm034144s CrossRef
    36. Reddad Z, Gerente C, Andres Y, Le Cloirec P (2002) Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol 36(9):2067-073. doi:10.1021/Es0102989 CrossRef
    37. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5):1983-989. doi:10.1021/Bm0497769 CrossRef
    38. Saito T, Isogai A (2005) Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system. Carbohydr Polym 61(2):183-90. doi:10.1016/j.carbpol.2005.04.009 CrossRef
    39. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485-491. doi:10.1021/bm0703970 CrossRef
    40. Sato A, Wang R, Ma HY, Hsiao BS, Chu B (2011) Novel nanofibrous scaffolds for water filtration with bacteria and virus removal capability. J Electron Microsc 60(3):201-09. doi:10.1093/jmicro/dfr019 CrossRef
    41. Sehaqui H (2011) Nanofiber networks, aerogels and biocomposites based on nanofibrillated cellulose from wood. Royal Institute of Technology, Stockholm
    42. Sehaqui H, Salajkova M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6(8):1824-832. doi:10.1039/b927505c CrossRef
    43. Sehaqui H, Zhou Q, Berglund LA (2011a) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593-599. doi:10.1016/j.compscitech.2011.07.003 CrossRef
    44. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011b) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12(10):3638-644. doi:10.1021/Bm2008907 CrossRef
    45. Sehaqui H, Zimmermann T, Tingaut P (2014) Hydrophobic cellulose nanopaper through a mild esterification procedure. Cellulose 21(1):367-82. doi:10.1007/s10570-013-0110-5 CrossRef
    46. Shukla SR, Pai RS (2005) Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres. Bioresour Technol 96(13):1430-438. doi:10.1016/j.biortech.2004.12.010 CrossRef
    47. Silava N (2010) Determination of copper concentration using UV–vis spectrophotometry. In Scribd digital library. Available at: http://www.scribd.com/doc/42191846/Determination-of-Copper-Concentration-Using-UV-Vis-Spectrophotometery
    48. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459-94. doi:10.1007/s10570-010-9405-y CrossRef
    49. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097-111. doi:10.1007/s10570-011-9533-z CrossRef
    50. Suraj G, Iyer CSP, Lalithambika M (1998) Adsorption of cadmium and copper by modified kaolinite. Appl Clay Sci 13(4):293-06. doi:10.1016/S0169-1317(98)00043-X CrossRef
    51. Tingaut P, Hauert R, Zimmermann T (2011) Highly efficient and straightforward functionalization of cellulose films with thiol-ene click chemistry. J Mater Chem 21(40):16066-6076. doi:10.1039/C1jm11620g CrossRef
    52. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815-27
    53. Veli S, Alyuz B (2007) Adsorption of copper and zinc from aqueous solutions by using natural clay. J Hazard Mater 149(1):226-33. doi:10.1016/j.jhazmat.2007.04.109 CrossRef
    54. Vijayaraghavan K, Palanivelu K, Velan M (2006) Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresour Technol 97(12):1411-419. doi:10.1016/j.biortech.2005.07.001 CrossRef
    55. Visanko M, Liimatainen H, Sirvi? JA, Haapala A, Sliz R, Niinim?ki J, Hormi O (2014) Porous thin film barrier layers from 2,3-dicarboxylic acid cellulose nanofibrils for membrane structures. Carbohydr Polym. doi:10.1016/j.carbpol.2013.12.006
    56. Wu FC, Tseng RL, Juang RS (1999) Role of pH in metal adsorption from aqueous solutions containing chelating agents on chitosan. Ind Eng Chem Res 38(1):270-75. doi:10.1021/Ie980242w CrossRef
    57. Yu B, Zhang Y, Shukla A, Shukla SS, Dorris KL (2000) The removal of heavy metal from aqueous solutions by sawdust adsorption—removal of copper. J Hazard Mater 80(1-):33-2. doi:10.1016/S0304-3894(00)00278-8 CrossRef
  • 作者单位:Houssine Sehaqui (1)
    Uxua Perez de Larraya (2)
    Peng Liu (4)
    Numa Pfenninger (3)
    Aji P. Mathew (4)
    Tanja Zimmermann (1)
    Philippe Tingaut (1)

    1. Applied Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, überlandstrasse 129, 8600, Dübendorf, Switzerland
    2. Cemitec, Polígono Mocholí, Plaza Cein 4, 31110, Noain, Navarra, Spain
    4. Division of Materials Science, Lule? University of Technology, 971 87, Lule?, Sweden
    3. Eawag, überlandstrasse 133, 8600, Dübendorf, Switzerland
  • ISSN:1572-882X
文摘
Biobased nanofibers are increasingly considered in purification technologies due to their high mechanical properties, high specific surface area, versatile surface chemistry and natural abundance. In this work, cellulose and chitin nanofibers functionalized with carboxylate entities have been prepared from pulp residue (i.e., a waste product from the pulp and paper production) and crab shells, respectively, by chemically modifying the initial raw materials with the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) mediated oxidation reaction followed by mechanical disintegration. A thorough investigation has first been carried out in order to evaluate the copper(II) adsorption capacity of the oxidized nanofibers. UV spectrophotometry, X-ray photoelectron spectroscopy and wavelength dispersive X-rays analysis have been employed as characterization tools for this purpose. Pristine nanofibers presented a relatively low content of negative charges on their surface thus adsorbing a low amount of copper(II). The copper adsorption capacity of the nanofibers was enhanced due to the oxidation treatment since the carboxylate groups introduced on the nanofibers surface constituted negative sites for electrostatic attraction of copper ions (Cu2+). The increase in copper adsorption on the nanofibers correlated both with the pH and carboxylate content and reached maximum values of 135 and 55?mg?g? for highly oxidized cellulose and chitin nanofibers, respectively. Furthermore, the metal ions could be easily removed from the contaminated nanofibers through a washing procedure in acidic water. Finally, the adsorption capacity of oxidized cellulose nanofibers for other metal ions, such as nickel(II), chromium(III) and zinc(II), was also demonstrated. We conclude that TEMPO oxidized biobased nanofibers from waste resources represent an inexpensive and efficient alternative to classical sorbents for heavy metal ions removal from contaminated water.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700