PEGylation of superparamagnetic iron oxide nanoparticle for drug delivery applications with decreased toxicity: an in vivo study
详细信息    查看全文
  • 作者:Suma Prabhu ; Srinivas Mutalik ; Sharada Rai…
  • 关键词:Genotoxicity ; Organ ; specific toxicity ; Prussian blue staining ; Superparamagnetic iron oxide nanoparticles ; Biochemical Parameters
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:17
  • 期:10
  • 全文大小:7,958 KB
  • 参考文献:Adamson I, Sienko A, Tenenbein M (1993) Pulmonary toxicity of deferoxamine in iron poisoned mice. Toxicol Appl Pharmacol 120:13–19. doi:10.​1006/​taap.​1993.​1081 CrossRef
    Al Faraj A (2013) Preferential magnetic nanoparticle uptake by bone marrow derived macrophages sub-populations: effect of surface coating on polarization, toxicity, and in vivo MRI detection. J Nanopart Res 15:1. doi:10.​1007/​s11051-013-1797-9 CrossRef
    Alarifi S, Ali D, Alkahtani S, Alhader M (2014) Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line. Biol Trace Elem Res 159:416–424. doi:10.​1007/​s12011-014-9972-0 CrossRef
    Ankamwar B, Lai T, Huang J, Liu R, Hsiao M, Chen C, Hwu Y (2010) Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 21:075102. doi:10.​1088/​0957-4484/​21/​7/​075102 CrossRef
    Archana P, Rao BN, Ballal M, Rao BS (2009) Thymol, a naturally occurring monocyclic dietary phenolic compound protects Chinese hamster lung fibroblasts from radiation-induced cytotoxicity. Mutat Res 680:70–77. doi:10.​1016/​j.​mrgentox.​2009.​09.​010 CrossRef
    Auffan M et al (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735. doi:10.​1021/​es800086f CrossRef
    Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ 407:2093–2101. doi:10.​1016/​j.​scitotenv.​2008.​11.​022 CrossRef
    Balakumaran A, Pawelczyk E, Ren J, Sworder B, Chaudhry A, Sabatino M, Stroncek D, Frank JA, Robey PG (2010) Superparamagnetic iron oxide nanoparticles labeling of bone marrow stromal (mesenchymal) cells does not affect their “stemness”. PLoS ONE 5:e11462. doi:10.​1371/​journal.​pone.​0011462 CrossRef
    Barhoumi L, Dewez D (2013) Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. Biomed Res Int 2013:647974. doi:10.​1155/​2013/​647974 CrossRef
    Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA (2007) Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 127:1701–1712. doi:10.​1038/​sj.​jid.​5700733
    Barrera C, Herrera AP, Rinaldi C (2009) Colloidal dispersions of monodisperse magnetite nanoparticles modified with poly (ethylene glycol). J Colloid Interface Sci 329:107–113. doi:10.​1016/​j.​jcis.​2008.​09.​071 CrossRef
    Bellin MF, Beigelman C, Precetti-Morel S (2000) Iron oxide-enhanced MR lymphography: initial experience. Eur J Radiol 34:257–264. doi:10.​1016/​S0720-048X(00)00204-7 CrossRef
    Berry CC, Wells S, Charles S, Curtis AS (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24:4551–4557. doi:10.​1016/​S0142-9612(03)00237-0 CrossRef
    Bhasin G, Kauser H, Athar M (2002) Iron augments stage-I and stage-II tumor promotion in murine skin. Cancer Lett 183:113–122. doi:10.​1016/​S0304-3835(02)00116-7 CrossRef
    Brown DM, Hutchison L, Donaldson K, Stone V (2007) The effects of PM10 particles and oxidative stress on macrophages and lung epithelial cells: modulating effects of calcium-signaling antagonist. Am J Physiol Lung Cell Mol Physiol 292:L1444–L1451. doi:10.​1152/​ajplung.​00162.​2006 CrossRef
    Brullot W, Reddy NK, Wouters J, Valev VK, Goderis B, Vermant J, Verbiest T (2012) Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles. J Magn Magn Mater 324:1919–1925. doi:10.​1016/​j.​jmmm.​2012.​01.​032 CrossRef
    Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381. doi:10.​1021/​es052069i CrossRef
    Bulte JW, Douglas T, Witwer B, Zhang S-C, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147. doi:10.​1038/​nbt1201-1141 CrossRef
    Buyukhatipoglu K, Miller T, Morss Clyne A (2009) Flame synthesis and in vitro biocompatibility assessment of superparamagnetic iron oxide nanoparticles: cellular uptake, toxicity and proliferation studies. J Nanosci Nanotechnol 9:6834–6843. doi:10.​1166/​jnn.​2009.​1477 CrossRef
    Chen BA, Jin N, Wang J, Ding J, Gao C, Cheng J, Xia G, Gao F, Zhou Y, Chen Y, Zhou G, Li X, Zhang Y, Tang M, Wang X (2010) The effect of magnetic nanoparticles of Fe3O4 on immune function in normal ICR mice. Int J Nanomed 5:593. doi:10.​2147/​IJN.​S12162 CrossRef
    Cho WS, Cho M, Kim SR, Choi M, Lee JY, Han BS, Park SN, Yu MK, Jon S, Jeong J (2009) Pulmonary toxicity and kinetic study of Cy5. 5-conjugated superparamagnetic iron oxide nanoparticles by optical imaging. Toxicol Appl Pharmacol 239:106–115. doi:10.​1016/​j.​taap.​2009.​05.​026 CrossRef
    Cho WS, Duffin R, Thielbeer F, Bradley M, Megson IL, MacNee W, Poland CA, Tran CL, Donaldson K (2012) Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal-oxide nanoparticles. Toxicol Sci 126:469–477. doi:10.​1093/​toxsci/​kfs006 CrossRef
    DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Kenneth HY, Yeo CJ, Calhoun ES (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–109. doi:10.​1038/​nature10189 CrossRef
    Dick CA, Brown DM, Donaldson K, Stone V (2003) The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol 15:39–52. doi:10.​1080/​08958370304454 CrossRef
    Drexler KE (2006) Engines of creation 2.0 The coming era of nanotechnology, WOWIO, e-book edition Cerca con Google
    Du B, Han S, Li H, Zhao F, Su X, Cao X, Zhang Z (2015) Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy. Nanoscale 7:5411–5426. doi:10.​1039/​c4nr04257c CrossRef
    Easo SL, Mohanan PV (2015) In vitro hematological and in vivo immunotoxicity assessment of dextran stabilized iron oxide nanoparticles. Coll Surf B Biointerfaces 134:122–130. doi:10.​1016/​j.​colsurfb.​2015.​06.​046 CrossRef
    Elias A, Tsourkas A (2009) Imaging circulating cells and lymphoid tissues with iron oxide nanoparticles. Hematol Am Soc Hematol Educ Progr 2009:720–726. doi:10.​1182/​asheducation-2009.​1.​720 CrossRef
    Ferin J, Oberdorster G, Penney DP (1992) Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6:535–542. doi:10.​1165/​ajrcmb/​6.​5.​535 CrossRef
    Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. doi:10.​1038/​35041687 CrossRef
    Ganasoundari A, Devi PU, Rao B (1998) Enhancement of bone marrow radioprotection and reduction of WR-2721 toxicity by Ocimum sanctum. Mutat Res 397:303–312. doi:10.​1016/​S0027-5107(97)00230-3 CrossRef
    Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. doi:10.​1016/​j.​biomaterials.​2004.​10.​012 CrossRef
    Hamley IW (2003) Nanotechnology with soft materials Angew. Chem Int Ed 42:1692–1712. doi:10.​1002/​anie.​200200546 CrossRef
    Huang J, Bu L, Xie J, Chen K, Cheng Z, Li X, Chen X (2010) Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4:7151–7160. doi:10.​1021/​nn101643u CrossRef
    Hussain S, Hess K, Gearhart J, Geiss K, Schlager J (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983. doi:10.​1016/​j.​tiv.​2005.​06.​034 CrossRef
    Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5:316–327. doi:10.​1021/​mp7001285 CrossRef
    Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 41:2699–2711. doi:10.​1080/​1093452060096617​7 CrossRef
    Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond) 6:715–728. doi:10.​2217/​nnm.​11.​19 CrossRef
    Karlsson HL, Holgersson Å, Möller L (2008) Mechanisms related to the genotoxicity of particles in the subway and from other sources. Chem Res Toxicol 21:726–731. doi:10.​1021/​tx7003568 CrossRef
    Kedziorek DA, Muja N, Walczak P, Ruiz-Cabello J, Gilad AA, Jie CC, Bulte JW (2010) Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magn Reson Med 63:1031–1043. doi:10.​1002/​mrm.​22290 CrossRef
    Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee JK, Cho MH (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347. doi:10.​1093/​toxsci/​kfj027 CrossRef
    Kumar R, Inbaraj BS, Chen B (2010) Surface modification of superparamagnetic iron nanoparticles with calcium salt of poly (γ-glutamic acid) as coating material. Mater Res Bull 45:1603–1607. doi:10.​1016/​j.​materresbull.​2010.​07.​017 CrossRef
    Kumari M, Rajak S, Singh SP, Kumari SI, Kumar PU, Murty US, Mahboob M, Grover P, Rahman MF (2012) Repeated oral dose toxicity of iron oxide nanoparticles: biochemical and histopathological alterations in different tissues of rats. J Nanosci Nanotechnol 12:2149–2159. doi:10.​1166/​jnn.​2012.​5796 CrossRef
    Kumari M, Rajak S, Singh SP, Murty US, Mahboob M, Grover P, Rahman MF (2013) Biochemical alterations induced by acute oral doses of iron oxide nanoparticles in Wistar rats. Drug Chem Toxicol 36:296–305. doi:10.​3109/​01480545.​2012.​720988 CrossRef
    Kwon JT, Hwang SK, Jin H, Kim DS, Minai Tehrani A, Yoon HJ, Choi M, Yoon TJ, Han DY, Kang YW (2008) Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 50:1–6. doi:10.​1539/​joh.​50.​1 CrossRef
    Larsen EK, Nielsen T, Wittenborn T, Birkedal H, Vorup Jensen T, Jakobsen MH, Ostergaard L, Horsman MR, Besenbacher F, Howard KA, Kjems J (2009) Size-dependent accumulation of PEGylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano 3:1947–1951. doi:10.​1021/​nn900330m CrossRef
    Leonard A, Lauwerys R (1980) Carcinogenicity and mutagenicity of chromium. Mutat Res 76:227–239. doi:10.​1016/​0165-1110(80)90018-4 CrossRef
    Lewinski N, Graczyk H, Riediker M (2013) Human inhalation exposure to iron oxide particles. Bio Nano Mat 14:5–23. doi:10.​1515/​bnm-2013-0007
    Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39:9370–9376. doi:10.​1021/​es051043o CrossRef
    Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163. doi:10.​1021/​es062629t CrossRef
    Luo C, Li Y, Yang L, Wang X, Long J, Liu J (2014) Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses. Arch Toxicol 89:357–369. doi:10.​1007/​s00204-014-1267-x CrossRef
    Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M (2011a) Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5:7263–7276. doi:10.​1021/​nn2021088 CrossRef
    Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011b) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46. doi:10.​1016/​j.​addr.​2010.​05.​006 CrossRef
    Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P (2009) An in vitro study of bare and poly (ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure. Nanotechnology 20:225104. doi:10.​1088/​0957-4484/​20/​22/​225104 CrossRef
    Mesárošová M, Kozics K, Babelova A, Regendova E, Pastorek M, Vnukova D, Buliakova B, Razga F, Gabelova A (2014) The role of reactive oxygen species in the genotoxicity of surface-modified magnetite nanoparticles. Toxicol Lett 226:303–313. doi:10.​1016/​j.​toxlet.​2014.​02.​025 CrossRef
    Moller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S (2010) Role of oxidative damage in toxicity of particulates. Free Radic Res 44:1–46. doi:10.​3109/​1071576090330069​1 CrossRef
    Nance EA, Woodworth GF, Sailor KA, Shih TY, Xu Q, Swaminathan G, Xiang D, Eberhart C, Hanes J (2012) A dense poly(Ethylene Glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med 4:149ra119. doi:10.​1126/​scitranslmed.​3003594 CrossRef
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi:10.​1126/​science.​1114397 CrossRef
    Owens DE III, Peppas NA (2006) Opsonization, biodistribution and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102. doi:10.​1016/​j.​ijpharm.​2005.​10.​010 CrossRef
    Park S, Lim J, Kim J, Yun H, Kim C (2006) Toxicity estimation of magnetic fluids in a biological test. J Magn Magn Mater 304:e406–e408. doi:10.​1016/​j.​jmmm.​2006.​01.​205 CrossRef
    Park Y, Whitaker RD, Nap RJ, Paulsen JL, Mathiyazhagan V, Doerrer LH, Song YQ, Hürlimann MD, Szleifer I, Wong JY (2012) Stability of superparamagnetic iron oxide nanoparticles at different pH values: experimental and theoretical analysis. Langmuir 28:6246–6255. doi:10.​1021/​la204628c CrossRef
    Puntarulo S (2005) Iron, oxidative stress and human health. Mol Aspects Med 26:299–312. doi:10.​1016/​j.​mam.​2005.​07.​001 CrossRef
    Qian L, Meng T, Ming M, Ning G (2005) Study on cytotoxicity and oxidative effects of different sizes of hematite (Fe2O3) nanoparticles on CHL cell in vitro. China J Mod Med 13:001
    Randhawa MA (2009) Calculation of LD50 values from the method of Miller and Tainter, 1944. J Ayub Med Coll Abbottabad 21:184–185
    Rao BN, Rao BS, Aithal BK, Kumar MS (2009) Radiomodifying and anticlastogenic effect of Zingerone on Swiss albino mice exposed to whole body gamma radiation. Mutat Res 677:33–41. doi:10.​1016/​j.​mrgentox.​2009.​05.​004 CrossRef
    Reichard JF, Motz GT, Puga A (2007) Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucl Acids Res 35:7074–7086. doi:10.​1093/​nar/​gkm638 CrossRef
    Schwegmann H, Feitz AJ, Frimmel FH (2010) Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli. J Colloid Interface Sci 347:43–48. doi:10.​1016/​j.​jcis.​2010.​02.​028 CrossRef
    Singh N (2009) Conference scene-nanotoxicology: health and environmental impacts. Nanomedicine 4:385–390. doi:10.​2217/​nnm.​09.​20 CrossRef
    Singh N, Jenkins GJ, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:5358. doi:10.​3402/​nano.​v1i0.​5358 CrossRef
    Smith MT (1996) The mechanism of benzene-induced leukemia: a hypothesis and speculations on the causes of leukemia. Environ Health Perspect 6:1219–1225CrossRef
    Soenen SJ, De Cuyper M (2010) Assessing iron oxide nanoparticle toxicity in vitro: current status and future prospects. Nanomedicine 5:1261–1275. doi:10.​2217/​nnm.​10.​106 CrossRef
    Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley interscience, New York
    Thomas DJ, Styblo M, Lin S (2001) The cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharmacol 176:127–144. doi:10.​1006/​taap.​2001.​9258 CrossRef
    Unfried K, Albrecht C, Klotz LO, Von Mikecz A, Grether-Beck S, Schins RPF (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1:52–71. doi:10.​1080/​0022293070131493​2 CrossRef
    Wahajuddin SA (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed 7:3445. doi:10.​2147/​IJN.​S30320 CrossRef
    Wang L, Wang L, Ding W, Zhang F (2010) Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J Nanosci Nanotechnol 10:8617–8624. doi:10.​1166/​jnn.​2010.​2483 CrossRef
    Xie J, Liu G, Eden HS, Ai H, Chen X (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44:883–892. doi:10.​1021/​ar200044b CrossRef
    Yang L, Kuang H, Zhang W, Aguilar ZP, Xiong Y, Lai W, Xu H, Wei H (2015) Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale 7:625–636. doi:10.​1039/​C4NR05061D CrossRef
    Zhao S, Lin X, Zhang L, Sun L, Li J, Yang W, Sun Z (2012) The in vivo investigation of Fe3O4-nanoparticles acute toxicity in mice. BME 24:229–235. doi:10.​4015/​S101623721250005​6
    Zhu MT, Feng WY, Wang B, Wang TC, Gu YQ, Wang M, Wang Y, Ouyang H, Zhao YL, Chai ZF (2008) Comparative study of pulmonary responses to nano-and submicron-sized ferric oxide in rats. Toxicology 247:102–111. doi:10.​1016/​j.​tox.​2008.​02.​011 CrossRef
  • 作者单位:Suma Prabhu (1)
    Srinivas Mutalik (2)
    Sharada Rai (3)
    Nayanabhirama Udupa (4)
    Bola Sadashiva Satish Rao (1)

    1. Department of Radiation Biology & Toxicology, School of Life Sciences, Manipal University, Manipal, Karnataka, 576 104, India
    2. Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576 104, India
    3. Department of Pathology, Kasturba Medical College, Manipal University, Mangalore, Karnataka, 575 001, India
    4. Director - Research (Health Sciences), Manipal University, Manipal, Karnataka, 576104, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
Superparamagnetic iron oxide nanoparticles (SPIONs) are evolving as a mainstay across various applications in the field of Science and Technology. SPIONs have enticed attention on the grounds of their unique physicochemical properties as well as potential applications in magnetic hyperthermia, immunoassays, as a contrast agent in magnetic resonance imaging and targeted drug delivery among others. Toward this goal, we synthesized SPIONs by chemical co-precipitation and PEGylated it. PEGylated SPIONs (PS) were studied for its detailed in vivo toxicity profile, in view of further surface engineering for its clinical applications. The intravenous LD50(14) of the PS was ascertained as 508.16 ± 41.52 mg/kg b wt. Histopathology of the vital organs of the animals injected with acute toxic doses showed pathological changes in spleen, lung, liver, and kidney. Accumulation of SPION was found in the aforementioned organs as confirmed by Prussian blue staining. Further, 1/10th dose of LD50(14) of PS and the Bare SPION (BS) was used to analyze a detailed toxicity profile, including genotoxicity (micronuclei formation and chromosomal aberration assays), organ-specific toxicity (a detailed serum biochemical analysis), and also determination of oxidative stress. The results of toxicity profile indicated no significant toxicity due to systemic exposure of PS. Atomic absorption spectroscopy (AAS) analysis confirmed the accumulation of SPION majorly in lungs, liver spleen, and kidneys. The present study thus indicated an optimal dose of PS which could be used for surface modification for targeted drug delivery applications with least toxicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700